

 1

2

By

Jason Cannon

Foreword by Daniel Jebaraj

 3

Copyright © 2014 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Rui Machado

Copy Editor: Benjamin S. Ball

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Graham High, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books ... 7

About the Author ... 9

Chapter 1 Introduction ... 10

What is Linux? ... 10

Linux Distributions .. 10

Chapter 2 Linux Directory Structure .. 11

Common Top-Level Directories ... 11

/ The Root Directory ... 11

/bin Binaries ... 11

/etc System Configuration Files ... 11

/home Home Directories .. 12

/opt Optional or Third-Party Software .. 12

/tmp Temporary Space .. 12

/usr User-Related Data, Read-Only ... 12

/var Variable Data .. 12

Comprehensive Listing of Top-Level Directories ... 12

Application Directory Structures .. 14

Organizational Directory Structures ... 15

Chapter 3 Command Line Interface ... 16

Basic Commands ... 17

Command Line Help .. 19

Chapter 4 Directories ... 22

Creating and Removing Directories ... 23

 5

Chapter 5 Viewing File and Directory Details.. 24

Escaping Spaces and Special Characters ... 30

Chapter 6 Permissions .. 32

Decoding Permissions ... 34

Changing Permissions ... 35

Numeric Based Permissions .. 37

Commonly Used Permissions .. 39

Working with Groups .. 40

Directory Permissions .. 40

Default Permissions and the File Creation Mask ... 41

Special Modes ... 43

umask Examples .. 45

Chapter 7 Viewing and Editing Files .. 47

Editing Files ... 49

The Vim Editor ... 49

Command Mode .. 49

Insert Mode .. 50

Line Mode .. 50

Repeating Commands ... 51

Additional Commands .. 51

Emacs .. 53

Graphical Editors ... 54

Chapter 8 Deleting, Moving, and Renaming Files and Directories ... 56

Chapter 9 Finding, Sorting, and Comparing Files and Directories ... 59

Sorting .. 61

Comparing ... 62

6

Chapter 10 I/O Redirection .. 64

Chapter 11 Additional Command Line Concepts ... 69

Aliases.. 71

Personal Initialization Files .. 72

Shell History ... 73

Tab Completion .. 74

Line Continuation ... 75

Chapter 12 Processes and Jobs ... 76

Jobs .. 79

Chapter 13 Switching Users.. 84

Sudo Super User Do .. 85

Using Sudo .. 85

Chapter 14 Installing Software ... 87

RPM-Based Distributions ... 87

Using the rpm Command ... 90

DEB-Based Distributions ... 91

Using the dpkg Command ... 93

 7

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

8

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 9

About the Author

Jason Cannon started his career as a Unix and Linux System Engineer in 1999. Since that time,

he has utilized his Linux skills at companies such as Xerox, UPS, Hewlett-Packard, and

Amazon. Additionally, he has acted as a technical consultant and independent contractor for

small businesses as well as Fortune 500 companies.

Jason has professional experience with CentOS, RedHat Enterprise Linux, SUSE Linux

Enterprise Server, and Ubuntu. He has used several Linux distributions on personal projects

including Debian, Slackware, CrunchBang, and others. In addition to Linux, Jason has

experience supporting proprietary Unix operating systems including AIX, HP-UX, and Solaris.

He enjoys teaching others how to use and exploit the power of the Linux operating system.

Jason is the author of Command Line Kung Fu: Bash Scripting Tricks, Linux Shell Programming

Tips, and Bash One-liners as well as Linux for Beginners: An Introduction to the Linux Operating

System and Command Line. He is also the founder of http://LinuxTrainingAcademy.com, where

he blogs and teaches online video training courses.

http://www.amazon.com/gp/product/B00JRGCFLA/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00JRGCFLA&linkCode=as2&tag=jasoncame-20
http://www.amazon.com/gp/product/B00JRGCFLA/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00JRGCFLA&linkCode=as2&tag=jasoncame-20
http://www.amazon.com/gp/product/B00HNC1AXY/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00HNC1AXY&linkCode=as2&tag=jasoncame-20
http://www.amazon.com/gp/product/B00HNC1AXY/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00HNC1AXY&linkCode=as2&tag=jasoncame-20
http://www.linuxtrainingacademy.com/?utm_source=linux-succintly-ebook&utm_medium=ebook&utm_campaign=linux-succintly-ebook

10

Chapter 1 Introduction

What is Linux?

Linux is a Unix-like open source operating system. At the core of the operating system is the
Linux kernel. It acts as the intermediary between the applications which run in the operating
system and the underlying hardware.

Linux Distributions

A Linux distribution is the Linux kernel and a collection of software that, together, creates an
operating system. Even though the Linux kernel is at the heart of every distribution, the software
that is installed by default can vary greatly as each distribution its own goals and areas of focus.
However, what you will learn in this book is applicable to any distribution as the concepts are
fundamental to the Linux operating system as a whole.

Some distros (distributions) are maintained by a community of volunteers, while others are
backed by companies that charge fees for subscriptions and support. Some distros are
designed to run on laptops and desktops, while others are designed to run on servers. The
following are just a few of the most popular Linux distributions available today:

 Linux Mint

 Ubuntu

 Debian

 Fedora

 openSUSE

 Arch Linux

 CentOS

 Red Hat Enterprise Linux

 11

Chapter 2 Linux Directory Structure

The Linux directory structure is like a tree. The base of the Linux file system hierarchy begins at
the root, or trunk, and directories branch off from there. Each one of these directories, called
folders on other operating systems, can and often do contain other directories. The directories
on a Linux system are separated by a forward slash.

Common Top-Level Directories

What follows is a list of some of the most important top-level directories. Of course, all of the
directories on a Linux system have a purpose, but understanding what these particular
directories are for is rather important as a user of a Linux system. These top-level directories will
be the ones that you interact with most often.

/ The Root Directory

Every file and directory on a Linux system resides under the / directory. This directory is

referred to as the root directory or sometimes "slash," a shorthand way of saying forward slash.

Even additional physical or virtual storage devices that are attached to a Linux system live
somewhere underneath the / directory. The C:\ drive on a Windows system is analogous to /

on Linux. When another storage device is attached to a Windows system, it is assigned a new
drive letter such as D:\. On a Linux system, storage devices are attached, or mounted, to a

directory such as /mnt or /media/external.

/bin Binaries

The /bin directory houses essential user binaries and other executable programs. The most

basic and fundamental command line utilities reside in /bin. For example, some of the

commands in /bin are used to list, copy, move, and view files. Other non-essential binaries are

located in /usr/bin. You will find graphical applications such as web browsers and mail

readers there, as well as various other command line utilities.

/etc System Configuration Files

Configuration files that control how applications or the operating system behave are located in
the /etc directory. For example, there is a configuration file in /etc that tells the operating

system whether to boot into a text mode or a graphical mode.

12

/home Home Directories

Each user on a Linux system has a subdirectory dedicated to his or her account in the /home

directory. For example, my user account is "jason" and thus my home directory is /home/jason.

Since all users have their own home directory, they have the option of keeping their data
private, sharing it with other users on the system, or a combination of the two.

Typical home directory contents include files created by the user, text documents, vacation

pictures, music, etc. Additionally, user-specific configurations are stored in the home directory.

These configuration files can control the behavior of the user's graphical or text environment, for

example.

/opt Optional or Third-Party Software

Optional or third-party software resides in the /opt directory. The /opt directory is for software

that is not bundled with the operating system. For example, the Google Chrome web browser is
not part of the standard Linux operating system and installs in /opt/google/chrome.

/tmp Temporary Space

Temporary space is available in /tmp. This directory can be used by applications or by

individual users on the system. The contents of /tmp are typically cleared at boot time, so do

not store anything in /tmp that you can't live without or that you want to store long-term.

/usr User-Related Data, Read-Only

The /usr directory is where user-related programs and read-only data reside. The contents of

/usr are meant to be used by actual users of the system as opposed to the operating system

itself. A whole directory hierarchy exists in /usr. For example, the /usr/bin directory contains

binary files and applications, while /usr/share/doc contains documentation related to those

applications.

/var Variable Data

Variable data, the most notable being log files, is stored in the /var directory. Several log files

exist in the /var/log directory or a subdirectory thereof.

Comprehensive Listing of Top-Level Directories

In addition to the directories previously covered, there are additional top-level directories you
may encounter on a Linux system. Many of these directories will be of little concern to you in
your day-to-day use of the operating system; however, they are an essential part of a
functioning Linux system. This may be used as a quick reference to help you understand the

 13

general purpose of each of these top-level directories. Some subdirectories are included in this
list to help clearly define the purpose of the top-level directory.

/ The starting point of the Linux file system hierarchy, called the root directory.

/bin Binaries and other executable programs.

/boot Files required to boot the operating system.

/cdrom Where CD-ROMs are attached or mounted.

/cgroup Control groups hierarchy.

/dev Device files, typically controlled by the operating system and the system administrators.

/etc System configuration files.

/home User home directories.

/lib System libraries.

/lib64 System libraries, 64-bit.

/lost+found Used by the file system to store recovered files after a file system check has

been performed.

/media Used to mount removable media like USB drives.

/mnt Used to mount external file systems.

/opt Optional or third-party software.

/proc Process information virtual file system.

/root The home directory for the root (superuser) account.

/sbin System administration binaries.

/selinux Virtual file system used to display information about SELinux.

/srv Contains data which is served by the system.

/srv/www Web server files.

/srv/ftp FTP files.

/sys Virtual file system used to display and sometimes configure the devices and buses

known to the Linux kernel.

/tmp Temporary space, typically cleared on reboot.

14

/usr User-related programs, libraries, and documentation.

/usr/bin Binaries and other executable programs.

/usr/lib Libraries.

/usr/local Locally installed software that is not part of the base operating system.

/usr/sbin System administration binaries.

/var Variable data, most notably log files.

/var/log Log files.

If you encounter other top-level directories that have not been listed here, those were more than
likely created by the system administrator.

Application Directory Structures

Application directory structures can be patterned after the operating system. Here is a sample
directory structure of an application named apache installed in /usr/local.

/usr/local/apache/bin The application's binaries and other executable programs.

/usr/local/apache/etc Configuration files for the application.

/usr/local/apache/lib Application libraries.

/usr/local/apache/logs Application log files.

If apache were to be installed in /opt it would look like this:

/opt/apache/bin The application's binaries and other executable programs.

/opt/apache/etc Configuration files for the application.

/opt/apache/lib Application libraries.

/opt/apache/logs Application log files.

Another common application directory structure pattern includes moving the configuration and

variable data outside of /opt. Instead of placing all of the application components in /opt/app-

name, /etc/opt/app-name is used for configuration files and /var/opt/app-name is used for

logs. Continuing with the apache application example, here is a demonstration of this method:

/etc/opt/apache Configuration files for the application.

/opt/apache/bin The application's binaries and other executable programs.

 15

/opt/apache/lib Application libraries.

/var/opt/apache Application log files.

Not only can applications be segregated into their own directories, they can share a common
directory structure with other applications that are not part of the standard operating system. For
example, apache can be directly installed into /usr/local. In this case, the binaries would

reside in /usr/local/bin, while the configuration would reside in /usr/local/etc. Since

apache may not be the only locally installed application, it could share that space with the other
programs.

Organizational Directory Structures

Directory structures can be based on an organization such as a company, group, or team. For
example, if you work for the Widget corporation, you may find a directory named /opt/widget

or /usr/local/widget on the company's Linux servers. In some cases, this base directory is

treated much like an application directory. It will contain common subdirectories like /etc and

/bin. Here is an example:

/opt/widget The top-level directory for the Widget company.

/opt/widget/bin Binaries and programs installed or created by the Widget company.

/opt/widget/etc Configuration files for the programs installed or created by the Widget

company.

Further subdivisions can be made within this organizational directory structure. For instance,
each application may receive its own subdirectory as follows:

/opt/widget The top-level directory for the Widget company.

/opt/widget/apache The top-level directory for the Widget company's installation of apache.

/opt/widget/apache/bin The apache binaries.

/opt/widget/apache/bin The apache configuration files.

Here are variations on the same theme, but based on a team within the company.

/opt/sysadmin The system administrator team's top-level directory.

/opt/widget/sysadmin The system administrator team's top-level directory.

/usr/local/widget/sysadmin The system administrator team's top-level directory.

16

Chapter 3 Command Line Interface

A shell is a program that accepts commands and instructs the operating system to execute
those commands. When you connect to a Linux system over the network, for example, a shell is
started and acts as your interface to the system. The shell in this particular case is a command
line interpreter. The command-line interface is often referred to by its abbreviation, CLI.

When you connect to a Linux system directly via an attached keyboard and display, you will
either be presented with a textual interface or a graphical interface, depending on how that
system is configured. In the case of a textual interface, you will have a very similar experience
as if you had connected to that system over the network. When you log in, a command line shell
is started and you are presented with a prompt.

If you connect to a system that is in graphical mode, you will be interacting with a graphical user
interface (GUI). In order to access the command line while logged into a GUI, you will need to
start a terminal emulator application. Common terminal emulators include xterm, GNOME
Terminal, Konsole, rxvt, and Eterm. The one you choose depends on personal preference and
availability, but they all provide the same basic functionality—access to the command line.

The following demonstrates logging into an Ubuntu Linux server at the command line.

Ubuntu 14.04 LTS linuxsvr tty1

linuxsvr login: jason

Password:

Welcome to Ubuntu 14.04 LTS

jason@linuxsvr:~$

The line jason@linuxsvr:~$ is the command prompt. The default prompt varies from

distribution to distribution and shell to shell. There are a variety of shells with the most common
and popular one being Bash. All users can customize their shell prompt to their liking. The
information provided in this shell prompt includes the username, the server name, and the
current directory.

The tilde represents the home directory of the current user which is /home/jason in this

example. You can also specify a username after the tilde, in which case it will expand to the
home directory of that user. For example, ~john expands to /home/john. No matter where the

user's home directory is, ~username will be translated to that directory. In the case of an

application user such as www-data, ~www-data expands to /var/www.

The following are examples of various shell prompts.

[jason@linuxsvr /tmp]$

linuxsvr:/home/jason>

jason@linuxsvr:~>

 17

[12:32:19 linuxsvr ~]$

%

>

$

Shell prompts are not limited to a single line. The following example shell prompts span multiple
lines.

linuxsvr:[/home/jason]

$

(jason@linuxsvr)-(09:22am-:-12/15)-]-

(~)

[Mon 14/12/15 09:22 EST][pts/3][x86_64]

<jason@linuxsvr:~>

zsh 26 %

linuxsvr | Mon Dec 15 09:22am

~/

In the remainder of examples in this book, the shell prompt will be abbreviated to just the dollar
sign, unless displaying the entire prompt provides additional clarity.

Basic Commands

In Linux, commands are case-sensitive and are typically lowercase. Note that items surrounded
by square brackets are optional. Let's start with two commands that will allow you to navigate
around the system at the command line. They are pwd and cd.

pwd The pwd command displays the present working directory to your screen. This command

allows you to keep track of where you are in the file system hierarchy.

cd [directory] The cd command changes the current directory to the supplied directory. If

cd is executed without specifying a directory, it changes the current directory to your home

directory. This is how you navigate around the system.

The following is an example of how the pwd and cd commands can be used. Remember that

case matters.

$ pwd

/home/jason

$ Pwd

18

Pwd: command not found

$ cd /home

$ pwd

/home

$ cd /var/log

$ pwd

/var/log

$ cd

$ pwd

/home/jason

$

The most common way to see the contents of a directory is to use the ls command. To view the

contents of a file, use the cat command.

ls The ls command lists directory contents. Additionally, ls can be used to display

information about files and directories including permissions, size, and type.

cat [file] The cat command concatenates, or displays, files.

$ pwd

/home/jason

$ ls

Desktop Documents Downloads Music Pictures to-do.txt

$ cat to-do.txt

This file contains my to-do list.

* Mow the lawn.

* Take over the world.

$ cd Music

$ ls

JohnColtrane

To end your command line session, type exit, logout, or Ctrl-d.

exit, logout, or Ctrl-d Exits the shell or your current session.

$ exit

logout

Connection to linuxsvr closed.

 19

Command Line Help

The Linux operating system provides built-in documentation. To access these online manuals,
also called man pages, use the man command. Man pages are great for looking up the available

options for a given command or even finding a command that will help you accomplish the task
at hand.

man [command] The man command displays the online manual for a given command.

Once you have executed the man command, you can navigate through the man page with the

arrow keys, as well as the Page Up and Page Down keys. You can also use Enter to move
down a line, the Spacebar to move down a page, g to move to the beginning, and capital G to

move to the end of the man page. To quit, type q. To learn about even more commands

available while viewing man pages, type h for help.

Table 1: Navigating Man Pages

Action Key

Move down one line. Enter, Down Arrow

Move up one line. Up Arrow

Move down one page. Spacebar, Page Down

Go to the start or top. g

Go to the end or bottom. G

Quit. q

$ man

What manual page do you want?

$ man ls

LS(1) User Commands LS(1)

NAME

 ls - list directory contents

SYNOPSIS

 ls [OPTION]... [FILE]...

DESCRIPTION

 List information about the FILEs (the current directory by default).

Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

...

20

 Manual page ls(1) line 1 (press h for help or q to quit)

$

To search the man pages, supply a keyword to the -k option of the man command. If you are

looking for a command that will reboot the system, you could search for "reboot." Once you
have a list of man pages that contain that keyword, you can read the documentation for the
most promising ones.

$ man -k reboot

grub-reboot (8) - set the default boot entry for GRUB for the next boot

only

halt (8) - reboot or stop the system

poweroff (8) - reboot or stop the system

reboot (2) - reboot or enable/disable Ctrl-Alt-Del

reboot (8) - reboot or stop the system

$ man reboot

NAME

 reboot, halt, poweroff - reboot or stop the system

...

$

Some commands will print a help message when -h or --help is supplied as an argument.

Even the man command follows this convention.

$ man -h

Usage: man [OPTION...] [SECTION] PAGE...

 -C, --config-file=FILE use this user configuration file

 -d, --debug emit debugging messages

 -D, --default reset all options to their default values

 --warnings[=WARNINGS] enable warnings from groff

...

$ man --help

Usage: man [OPTION...] [SECTION] PAGE...

 -C, --config-file=FILE use this user configuration file

 -d, --debug emit debugging messages

 -D, --default reset all options to their default values

 --warnings[=WARNINGS] enable warnings from groff

...

$ ls --help

Usage: ls [OPTION]... [FILE]...

 21

List information about the FILEs (the current directory by default).

Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.

 -a, --all do not ignore entries starting with .

...

$

Given what you know about the Linux directory structure and the documentation that comes
with the Linux operating system, you can start exploring commands on your own. For example,
list the directory contents of /bin and /usr/bin. Pick out some commands that grab your

attention and use the man command to find out what each one of them does.

$ cd /bin

$ ls

awk diff cal cat cp date du echo grep groups less more

$ man date

NAME

 date - print or set the system date and time

...

$ cd /usr/bin

$ ls

clear crontab cut dos2unix find kill mv pstree pwd sed strings touch ...

$ man clear

The output of the preceding ls commands was truncated. In reality, you will likely find dozens of

commands in /bin and hundreds in /usr/bin.

Before we move on, I want to share one last basic command that you might find useful. It is the
clear command. If you want to a fresh screen to work with, issue the clear command to clear

the contents of your screen.

22

Chapter 4 Directories

In addition to referencing directories by their full or absolute paths, you can reference directories
by their relative paths. An absolute path starts with a forward slash. An example of a full path is
/home/jason/Music. A relative path does not start with a forward slash. When using relative

paths, the paths are relative to the current working directory. To change into the Music directory
from /home/jason, you would simply type cd Music.

$ cd /home

$ pwd

/home

$ cd jason/Music

$ pwd

/home/jason/Music

$ cd JohnColtrane

$ pwd

/home/jason/Music/JohnColtrane

Linux uses a . to represent the current directory and .. to represent the parent directory. Also,

directories end in a trailing forward slash, but this is often assumed. The following commands
place you in the same directory.

$ pwd

/home/jason

$ cd ..

$ pwd

/home

$ cd /home

$ pwd

/home

$ cd /home/

$ pwd

/home

To quickly return to your previous working directory, use the cd - command.

$ cd /var/log

$ pwd

/var/log

$ cd /etc/init.d

$ pwd

 23

/etc/init.d

$ cd -

/var/log

$ pwd

/var/log

$

Creating and Removing Directories

To create a directory, use the mkdir command. Directories can be deleted with the rmdir and

rm commands.

mkdir [-p] directory Create a directory. When used with the -p (parents) option,

intermediate directories are created.

rmdir [-p] directory Remove a directory. When used with the -p (parents) option, all the

specified directories in the path are removed. The rmdir command only removes empty

directories. To remove directories and their contents, use rm.

rm -rf directory The rm command removes files, directories, or both. To have rm

recursively remove a directory and all of its contents, use the -r (recursive) and -f (force)

options. Multiple options can be combined by using a dash followed by all the options without a
space. Order does not matter. The commands rm -r -f dir, rm -rf dir, and rm -fr dir

are all equivalent.

Use the rm command with caution, especially rm -rf. The command line doesn't have a trash

container where you can restore accidentally deleted files. When you delete something at the
command line it is gone. The following demonstrates the use of mkdir, rmdir, and rm.

$ mkdir newdir

$ mkdir newdir/one/two

mkdir: cannot create directory ‘newdir/one/two’: No such file or directory

$ mkdir -p newdir/one/two

$ rmdir newdir

rmdir: directory "newdir": Directory not empty

$ rm -rf newdir

$ ls newdir

ls: newdir: No such file or directory

$ mkdir newerdir

$ rmdir newerdir

$ ls newerdir

ls: cannot access newerdir: No such file or directory

$

24

Chapter 5 Viewing File and Directory Details

The ls command was briefly introduced in Chapter 3. It not only lists files and directories, it can

provide important details about those files and directories. One of the most common options to
use with ls is -l, which displays a long listing format. The following is an example.

$ ls

Desktop Documents Downloads Music to-do.txt

$ ls -l

total 20

drwxrwxr-x 2 jason users 4096 May 3 08:33 Desktop

drwxrwxr-x 2 jason users 4096 May 3 08:35 Documents

drwxrwxr-x 2 jason users 4096 May 3 08:38 Downloads

drwxrwxr-x 3 jason users 4096 Jun 21 21:16 Music

-rw-r--r-- 1 jason users 73 Jun 22 19:34 to-do.txt

$

The information provided by ls -l starts with a series of characters that represent the

permissions of the file or directory. Permissions will be covered in Chapter 6. The number that
follows the permissions string represents the number of links to the file or directory. Next, the
owner is displayed followed by the group name. The file size is then displayed. The timestamp
provided represents the modification time. The last item is the name of the file or directory itself.

$ ls -l to-do.txt

-rw-r--r-- 1 jason users 73 Jun 22 19:34 to-do.txt

---------- - ----- ----- -- ------------ ---------

 | | | | | | |

 | | | | | | File Name

 | | | | | |

 | | | | | +----- Modification Time

 | | | | |

 | | | | +------------- Size in bytes

 | | | |

 | | | +------------------ Group

 | | |

 | | +------------------------ User (owner)

 | |

 | +---------------------------- Number of Links

 |

 +---------------------------------- Permissions

 25

By default, ls does not display files or directories that begin with a period. In Linux, such files

are considered hidden. To display hidden files with ls, use the -a option to include all items. To

display all items in a long listing format, use -l and -a. Remember that the options can be

combined. These three commands are equivalent: ls -l -a, ls -la, and ls -al.

$ ls

Desktop Documents Downloads Music to-do.txt

$ ls -a

. .. .bash_history .bash_logout .bashrc Desktop Documents Downloads

Music .profile .ssh to-do.txt

$ ls -a -l

total 48

drwxr-xr-x 7 jason users 4096 Jun 22 20:36 .

drwxr-xr-x 6 root root 4096 May 4 10:26 ..

-rw------- 1 jason users 3738 Jun 22 19:37 .bash_history

-rw-r--r-- 1 jason users 220 Mar 30 2013 .bash_logout

-rw-r--r-- 1 jason users 3650 Jun 22 19:41 .bashrc

drwxrwxr-x 2 jason users 4096 May 3 08:33 Desktop

drwxrwxr-x 2 jason users 4096 May 3 08:35 Documents

drwxrwxr-x 2 jason users 4096 May 3 08:38 Downloads

drwxrwxr-x 3 jason users 4096 Jun 21 21:16 Music

-rw-r--r-- 1 jason users 675 Mar 30 2013 .profile

drwx------ 2 jason users 4096 May 3 12:44 .ssh

-rw-r--r-- 1 jason users 73 Jun 22 19:34 to-do.txt

$ ls -al

total 48

drwxr-xr-x 7 jason users 4096 Jun 22 20:36 .

drwxr-xr-x 6 root root 4096 May 4 10:26 ..

-rw------- 1 jason users 3738 Jun 22 19:37 .bash_history

-rw-r--r-- 1 jason users 220 Mar 30 2013 .bash_logout

-rw-r--r-- 1 jason users 3650 Jun 22 19:41 .bashrc

drwxrwxr-x 2 jason users 4096 May 3 08:33 Desktop

drwxrwxr-x 2 jason users 4096 May 3 08:35 Documents

drwxrwxr-x 2 jason users 4096 May 3 08:38 Downloads

drwxrwxr-x 3 jason users 4096 Jun 21 21:16 Music

-rw-r--r-- 1 jason users 675 Mar 30 2013 .profile

drwx------ 2 jason users 4096 May 3 12:44 .ssh

-rw-r--r-- 1 jason users 73 Jun 22 19:34 to-do.txt

$ ls -la

total 48

drwxr-xr-x 7 jason users 4096 Jun 22 20:36 .

drwxr-xr-x 6 root root 4096 May 4 10:26 ..

-rw------- 1 jason users 3738 Jun 22 19:37 .bash_history

26

-rw-r--r-- 1 jason users 220 Mar 30 2013 .bash_logout

-rw-r--r-- 1 jason users 3650 Jun 22 19:41 .bashrc

drwxrwxr-x 2 jason users 4096 May 3 08:33 Desktop

drwxrwxr-x 2 jason users 4096 May 3 08:35 Documents

drwxrwxr-x 2 jason users 4096 May 3 08:38 Downloads

drwxrwxr-x 3 jason users 4096 Jun 21 21:16 Music

-rw-r--r-- 1 jason users 675 Mar 30 2013 .profile

drwx------ 2 jason users 4096 May 3 12:44 .ssh

-rw-r--r-- 1 jason users 73 Jun 22 19:34 to-do.txt

To append a file type indicator to the name of the file or directory in the ls output, use the -F

option.

$ ls

Desktop Documents Downloads link-to-to-do Music program to-do.txt

$ ls -F

Desktop/ Documents/ Downloads/ link-to-to-do@ Music/ program* to-

do.txt

$ ls -lF

total 24

drwxrwxr-x 2 jason users 4096 May 3 08:33 Desktop/

drwxrwxr-x 2 jason users 4096 May 3 08:35 Documents/

drwxrwxr-x 2 jason users 4096 May 3 08:38 Downloads/

lrwxrwxrwx 1 jason users 9 Jun 22 21:01 link-to-to-do -> to-do.txt

drwxrwxr-x 3 jason users 4096 Jun 21 21:16 Music/

-rwxr-xr-x 1 jason users 13 Jun 22 21:02 program*

-rw-r--r-- 1 jason users 73 Jun 22 19:34 to-do.txt

$

Table 2: File Type Indicators

File Type Symbol

Directory /

Symlink. The file that follows the -> symbol is
the target of the link.

@

Executable script or program *

Socket =

Door >

Named pipe |

 27

A symbolic link, sometimes called a symlink or just link, points to the location of an actual file or
directory. The symlink is just a pointer, but you can operate on it as if it were the actual file or
directory. Symbolic links are often used to create shortcuts to long names or long paths.
Another common use for symlinks is to point to the current version of an application as in the
following example.

$ cd /opt/nginx/

$ ls -F

1.6.0/ 1.7.1/ 1.7.2/ current@

$ ls -lF

total 12

drwxr-xr-x 2 root root 4096 Jun 22 21:12 1.6.0/

drwxr-xr-x 2 root root 4096 Jun 22 21:11 1.7.1/

drwxr-xr-x 2 root root 4096 Jun 22 21:11 1.7.2/

lrwxrwxrwx 1 root root 5 Jun 22 21:12 current -> 1.7.2/

$

To sort the output of the ls command by time, use the -t option. This displays the most

recently modified items first. If you want to reverse the order, use -r. This can come in handy

when you have a directory that contains many files. When you sort them by time in reverse the
old files will scroll off the top of your screen, while the newest files will be displayed right above
your prompt.

$ ls -t

program link-to-to-do to-do.txt Music Downloads Documents Desktop

$ ls -lt

total 24

-rwxr-xr-x 1 jason users 13 Jun 22 21:02 program

lrwxrwxrwx 1 jason users 9 Jun 22 21:01 link-to-to-do -> to-do.txt

-rw-r--r-- 1 jason users 73 Jun 22 19:34 to-do.txt

drwxrwxr-x 3 jason users 4096 Jun 21 21:16 Music

drwxrwxr-x 2 jason users 4096 May 3 08:38 Downloads

drwxrwxr-x 2 jason users 4096 May 3 08:35 Documents

drwxrwxr-x 2 jason users 4096 May 3 08:33 Desktop

$ ls -lrt

total 24

drwxrwxr-x 2 jason users 4096 May 3 08:33 Desktop

drwxrwxr-x 2 jason users 4096 May 3 08:35 Documents

drwxrwxr-x 2 jason users 4096 May 3 08:38 Downloads

drwxrwxr-x 3 jason users 4096 Jun 21 21:16 Music

-rw-r--r-- 1 jason users 73 Jun 22 19:34 to-do.txt

lrwxrwxrwx 1 jason users 9 Jun 22 21:01 link-to-to-do -> to-do.txt

-rwxr-xr-x 1 jason users 13 Jun 22 21:02 program

28

$

To perform a recursive listing, use the -R option.

$ ls -R

.:

Desktop Documents Downloads link-to-to-do Music program to-do.txt

./Desktop:

./Documents:

cat.jpg report.txt

./Downloads:

./Music:

JohnColtrane

./Music/JohnColtrane:

giant-steps.mp3

$

To accomplish the same goal, but in a more visually appealing way, use the tree command. To

view only the directory structure, use tree -d. For colorized output, use tree -C. The tree

command is not always installed by default so you may have to rely on the ls command.

$ tree

.

|-- Desktop

|-- Documents

| |-- cat.jpg

| |-- report.txt

|-- Downloads

|-- link-to-to-do -> to-do.txt

|-- Music

| |-- JohnColtrane

| |-- giant-steps.mp3

|-- program

|-- to-do.txt

5 directories, 6 files

$ tree -d

 29

.

|-- Desktop

|-- Documents

|-- Downloads

|-- Music

 |-- JohnColtrane

5 directories

$

When the ls command is run against a directory, the contents of the directory are displayed. To

have ls operate on just the directory, use the -d option.

$ tree Music/

Music/

|-- JohnColtrane

 |-- giant-steps.mp3

1 directory, 1 file

$ ls Music/

JohnColtrane

$ ls -l Music/

total 4

drwxrwxr-x 2 jason users 4096 Jun 22 21:39 JohnColtrane

$ ls -d Music/

Music/

$ ls -ld Music/

drwxrwxr-x 3 jason users 4096 Jun 21 21:16 Music/

$

To colorize the output of the ls command, use the --color option. Much like the -F option, this

option allows for the differentiation of file types.

$ ls --color

Desktop Documents Downloads link-to-to-do Music program to-do.txt

The following is a recap of the ls options covered in this chapter. Even though ls has many

more options, these few will cover the most common use cases.

30

Table 3: Commonly Used ls Options

Description Option

Display all files, including hidden files. -a

Colorize output. --color

List directories and not their contents. -d

Use the long listing format. -l

Reverse the order. -r

List files recursively. -R

Sort by time. -t

Escaping Spaces and Special Characters

Even though spaces are permitted in file and directory names, it can be easier to avoid them if
possible. Instead of using spaces consider using hyphens or underscores. Another good option
is to use CamelCase. For example, instead of naming a file my to do list, name it my-to-
do-list, my_to_do_list, or even MyToDoList.

Even if you choose to avoid using spaces in file names, you may encounter file names created
by others that do include spaces. The two ways of operating on files with spaces in their names
is to use quotation marks or escaping. To operate on a file named my to do list, enclose it in

quotation marks like so: "my to do list". To escape the file name, precede the spaces with a

backslash like so: my\ to\ do\ list. Escaping is like using quotation marks except that it is

for single characters.

If you are unsure how to escape a file or directory name, let ls show you by using the -b option.

Quoting and escaping not only applies to space, but to other special characters including |, &,
', ;, (,), <, >, space, and tab.

$ ls

my to do list

$ ls -l

total 4

-rw-r--r-- 1 jason users 73 Jun 22 22:16 my to do list

$ ls -l my to do list

ls: cannot access my: No such file or directory

ls: cannot access to: No such file or directory

ls: cannot access do: No such file or directory

ls: cannot access list: No such file or directory

$ ls -l "my to do list"

 31

-rw-r--r-- 1 jason users 73 Jun 22 22:16 my to do list

$ ls -l my\ to\ do\ list

-rw-r--r-- 1 jason users 73 Jun 22 22:16 my to do list

$ ls -lb

total 4

-rw-r--r-- 1 jason users 73 Jun 22 22:16 my\ to\ do\ list

$

32

 Chapter 6 Permissions

Looking back at the long listings provided by the ls command, we can now decipher the

permissions for a given file or directory listing. Permissions are displayed at the beginning of
long listings.

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

The first character in the permissions string reveals the type. For example, - is a regular file, d

is a directory, and l is a symbolic link. Those are the most common types you will encounter.

However, there are other file types listed in the following table.

Table 4: File Types

Symbol File Type

- Regular file

b Block special file

c Character special file

d Directory

l Symbolic link

p FIFO (named pipe)

s Socket

? Some other file type

The remaining characters in the permissions string represent the three main types of
permissions: read, write, and execute. Each permission is represented by a single letter, also
known as a symbol. Read is represented by r, write by w, and execute by x.

Table 5: Permissions

Symbol Permission

r Read

w Write

x Execute

 33

For files as opposed to directories, read, write, and execute permissions have intuitive
meanings. Read permissions allow you to view the contents of a file. Write permissions allow
you to modify a file. Execute permissions allow you to run, or execute, a file as a program.

The meanings of the read, write, and execute permissions are not as intuitive when it comes to
directories. Read permissions allow you to read the file names in a directory. Write permissions
allow you to change the entries in a directory by renaming files, creating files, and deleting files.
Execute permissions allow you to cd or change into the directory. Review the following

differences between file and directory permissions.

Table 6: File and Directory Permissions

Directory Meaning File Meaning Permission

Allows file names in the
directory to be read.

Allows a file to be read. Read

Allows entries within the
directory to be modified.

Allows a file to be modified. Write

Allows access to the contents
and metadata of entries
within the directory.

Allows the execution of a file. Execute

All files in Linux are owned by a user and a group. This allows for unique permissions to be
applied across three sets of users: the user owner, the group owner, and others. When
modifying permissions, these sets can be represented by a single letter: u for the user owner, g

for the group owner, and o for others. In addition, the letter a can represent all three of these

permissions groups. Note that these characters do not show up in an ls listing, but they can be

used when changing permissions.

Table 7: User Categories

Symbol Category

u User

g Group

o Other

a All

Going back to our original example, we can view the user and group owner of the file
sales.data. The user owner is listed first, followed by the group owner. In this case, jason is

the user owner, and users is the group owner.

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

34

Every user is a member of at least one group, called their primary group. However, users can
be members of many groups. Groups are used to organize users into logical sets. For example,
a group named sales might be created and contain all the employees from the sales

department. You could then set a file’s group owner as the sales group, and allow members of

the sales group read and write permissions to the file, or any other set of permissions for that

matter.

To determine what groups you are a member of, run the groups command. If you supply

another user’s ID as an argument to the groups command, you will see the list of groups to

which that user belongs. You can also run id -Gn [user] to get the same result.

$ groups

users sales

$ id -Gn

users sales

$ groups tracy

users projectx dba

$ groups john

users sales manager

Decoding Permissions

Now you have enough background information to start decoding permissions strings. The first
character in the permissions string is the type. The next three characters represent the
permissions available to the user, also known as the owner of the file. The next three characters
represent the permissions available to the group. The last three characters represent the
permissions available to all others.

In this case, order has meaning. Permission groups will always be displayed in this order: user,
group, and others. Within these three permission groups, permission types will always be in this
order: read, write, and execute. If a particular permission type is not granted, then a hyphen (-)

will take its place.

Here is a colorized representation of the permission information displayed by ls -l. The file

type is highlighted in red, the user permissions in green, the group permissions in blue, and the
other permissions in purple.

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

By examining the preceding example, you can determine that the file type is a regular file (-),

the user owner is allowed read and write permissions (rw-), the group owner is granted read

permissions (r--), and others are allowed read permissions as well (r--). The user owner is

jason, and the group owner is users.

 35

If there happens to be an additional character at the end of the permissions string, an alternative
access control method has been applied. A trailing period (.) means that a SELinux (Security-

Enhanced Linux) security context has been applied to the file or directory. A trailing plus sign (+)

means that ACLs (Access Control Lists) are in use. SELinux and ACLs are beyond the scope of
this book. However, you will be pleased to know that the use of these is rare. If you are having
issues with permissions, look for an additional trailing character in the permissions string. If one
is present be aware that further investigation may be necessary.

$ ls -l sales.data.selinux

-rw-r--r--. 1 jason users 1040 Jun 14 09:31 sales.data.selinux

$ ls -l sales.data.acl

-rw-r--r--+ 1 jason users 1040 Jun 14 09:31 sales.data.acl

Changing Permissions

Permissions are also known as modes. The command chmod, which is short for "change mode,"

is used to change permissions. The format of the chmod command is chmod mode file. There

are two ways to specify the mode. The first way is called symbolic mode. The symbolic mode
format is chmod user_category operator permission. Here is a table view of the chmod

command using the symbolic mode format.

Table 8: Change Mode Command Symbols

Description Symbol

The change mode command itself. chmod

The user category. Use one or more of u for

user, g for group, o for other, a for all.

ugoa

One of +, -, or =. Use + to add permissions, -

to subtract them, or = to explicitly set them.

+-=

The actual permissions. Use one or more of r

for read, w for write, and x for execute.

rwx

You can add, subtract, or set permissions using user category and permission pairs. For
example, if you want to add the write permission for the group owner, you would specify chmod
g+w file.

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

$ chmod g+w sales.data

$ ls -l sales.data

-rw-rw-r-- 1 jason users 10400 Jun 14 09:31 sales.data

36

After running chmod g+w sales.data, the permissions string changed from -rw-r--r-- to -
rw-rw-r--. Remember that the permissions are displayed in the order of user, group, and

other. The group permission set now includes the w symbol, indicating that the write permission

has been granted. Now jason, the owner of the file, and members of the users group can read

and write to the sales.data file. The following example demonstrates how to subtract the write

permission.

$ ls -l sales.data

-rw-rw-r-- 1 jason users 10400 Jun 14 09:31 sales.data

$ chmod g-w sales.data

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

Multiple permissions can be changed at once. For example, you can add write and execute
permissions for the group owner by using g+wx.

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

$ chmod g+wx sales.data

$ ls -l sales.data

-rw-rwxr-- 1 jason users 10400 Jun 14 09:31 sales.data

You can also modify multiple permissions groups at once. For example, ug+wx will add write

and execute permissions for the user and group owners if they don’t already have them. In this
case, notice that the user owner already had write permission before the chmod command was

executed. After running chmod, the user owner will still have write permissions, as well as the

newly added execute permissions. Using + to add permissions will always add permissions, if

applicable. It never takes them away.

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

$ chmod ug+wx sales.data

$ ls -l sales.data

-rwxrwxr-- 1 jason users 10400 Jun 14 09:31 sales.data

If you want to set different permissions for different user categories, you can separate the
specifications with a comma. You can mix and match to produce the permissions you desire.
For example, u=rwx,g+x will set the read, write, and execute permissions for the file owner

while adding the execute permission for the group. See how the permissions change for
sales.data in the following example.

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

$ chmod u=rwx,g+x sales.data

 37

$ ls -l sales.data

-rwxr-xr-- 1 jason users 10400 Jun 14 09:31 sales.data

If you want to set the file to be readable, and only readable, by everyone, run chmod a=r file.

When you use the equal sign (=), the current permissions are replaced by what is specified. In

this case, a=r sets the read permission for user, group, and other. Any write or execute

permissions will be removed.

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

$ chmod a=r sales.data

$ ls -l sales.data

-r--r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

If you do not specify permissions following the equal sign, the permissions are removed. Here is
an illustration of this behavior.

$ ls -l sales.data

-rw-r--r-- 1 jason users 10400 Jun 14 09:31 sales.data

$ chmod u=rwx,g=rx,o= sales.data

$ ls -l sales.data

-rwxr-x--- 1 jason users 10400 Jun 14 09:31 sales.data

Numeric Based Permissions

The second way to specify modes with the chmod command is called octal mode.

Understanding symbolic mode will help you learn octal mode. Some Linux users never move
beyond symbolic permissions. However, experienced Linux users find using octal mode quicker
and easier in the long term because there are only a few commonly used permissions which
can be readily memorized and recalled.

Octal mode permissions are based on the binary numeral system, also known as the base-2
numeral system. Each permission type is treated as a bit that is either set to off, represented by
a zero (0), or on, represented by a one (1). In permissions, order has meaning. Permissions are

always in read, write, and execute order. If r, w, and x are all set to off, the binary representation

is 000. If they are all set to on, the binary representation is 111. To represent read and write

permissions while omitting execute permissions, the binary number is 110.

Table 9: Base-2 and Base-10 Representations of Permissions

Execute Write Read

0 0 0 Binary and decimal
value for off.

38

Execute Write Read

1 1 1 Binary value for on.

1 2 4 Decimal value for on.

Supply the chmod command with the base-10, or decimal, value of the desired permissions. To

convert the binary representation into decimal, remember that read equals 4, write equals 2,

and execute equals 1. The permissions number is determined by adding up the values for each

permission type. For example, read and execute permissions are represented by 5 because 4

for read, plus 1 for execute, equals 5. There are eight possible values from zero to seven, hence

the name octal mode. The following table demonstrates all eight of the possible permissions.

Table 10: Octal Permissions

Octal Binary String Permissions

0 000 --- No permissions

1 001 --x Execute only

2 010 -w- Write only

3 011 -wx Write and Execute

4 100 r-- Read only

5 101 r-x Read and Execute

6 110 rw- Read and Write

7 111 rwx Read, Write, and
Execute

Remember that in permissions order has meaning. The user categories are always in this order:
user, group, and other. Once the octal value is determined for each category, it must be
specified in that order. For example, to get -rwxr-xr—permissions, run chmod 754 file. That

means the owner of the file has read, write, and execute permissions; the members of the file's
group have read and execute permissions; and others only have read permissions.

Table 11: Symbolic, Binary, and Decimal Representations of a Given Permission

Other Group User

r-- rw- rwx Symbolic

100 110 111 Binary

4 6 7 Decimal

 39

Commonly Used Permissions

The following table illustrates the most commonly used permissions. These five permission sets
will cover most permission situations.

Table 12: Commonly Used Permissions

Symbolic Octal Meaning

-rwx------ 700 Allows the file's owner full
control over the file. No
others on the system have
access.

-rwxr-xr-x 755 Allows everyone on the
system to execute the file but
only the owner can edit it.

-rw-rw-r-- 664 Allows a group of people to
modify the file and let others
read it.

-rw-rw---- 660 Allows a group of people to
modify the file and not let
others read it.

-rw-r--r-- 644 Allows everyone on the
system to read the file but
only the owner can edit it.

Many times newcomers to the Linux operating system err on the side of permissive
permissions. Instead of thinking through the required permissions they sometimes grant
"everything to everybody" by using 777 or 666 permissions. Whenever you see a file or directory

with 777 or 666 permissions, know that there is almost always a better permission set that can

be used.

Granting unnecessary privileges to a file or directory not only has security implications, but it
can also invite unwanted changes to those files or directories. If a file has 777 permissions, then

anyone on the Linux system can edit that file. This can lead to a situation where someone
accidentally saves changes to a file when all they really wanted to do was view the file's
contents with an editor.

Also, a user on the system could purposefully use the weak permissions to escalate privileges,
gain access to data they shouldn't see, or even destroy data. They could potentially insert
malicious code into a script or program and wait for it to be executed by someone else on the
system. Remember that anyone on the system can execute the file because all permissions,
including the execute permission, have been granted.

If multiple people require write access to a file, make use of groups and limit the access of
others. Consider it a best practice to avoid using 777 and 666 permission modes.

40

Working with Groups

Let's look at a situation where multiple people need access to the same file. For example, if the
members of a sales team need to update a file named sales.report, the group owner of the

file could be set to the Linux group named sales by using the chgrp command. Next, the

permissions could be set to 664 (rw-rw-r--) or even 660 (rw-rw---) if you do not want others

on the system to be able to read the file. Technically, 774 (rwxrwxr--) or 770 (rwxrwx---)

permissions also work, but since sales.report is not an executable program, it makes more

sense to use 664 (rw-rw-r--) or 660 (rw-rw----).

When a file is created, it is set to the current user's primary group. You can override this
behavior by using the newgrp command, but remember by default a new file will inherit your

default group. In the following example, Jason's primary group is users. The format of the

chgrp command is chgrp GROUP FILE.

$ nano sales.report

$ ls -l sales.report

-rw-r--r-- 1 jason users 6 Jun 15 20:41 sales.report

$ chgrp sales sales.report

$ ls -l sales.report

-rw-r--r-- 1 jason sales 6 Jun 15 20:41 sales.report

$ chmod 664 sales.report

$ ls -l sales.report

-rw-rw-r-- 1 jason sales 6 Jun 15 20:41 sales.report

Sharing files from within individual user's home directories can be confusing. It's often easier to
keep shared data in a shared location. If you have superuser privileges, you could create a
/usr/local/sales directory for the sales team. If you don't have such permissions you can

ask the system administrator to create that directory for you. The group owner of the shared
directory should be set to sales and the permissions should be set to 775 (rwxrwxr-x) or 770
(rwxrwx---). Use 770 (rwxrwx---) if no one outside the sales team should have access to any

files, directories, or programs located in /usr/local/sales.

$ ls -ld /usr/local/sales

drwxrwxr-x 2 root sales 4096 Jun 15 20:53 /usr/local/sales

$ mv sales.report /usr/local/sales/

$ ls -l /usr/local/sales

total 4

-rw-rw-r-- 1 jason sales 6 Jun 15 20:41 sales.report

Directory Permissions

A common problem encountered by Linux newcomers is incorrect directory permissions.
Directory permissions usually only contain 0s, 5s, and 7s. Common directory permissions

 41

include 755, 700, 770, and 750. Incorrect directory permissions can prevent file access and file

execution. If you determine that a file's permissions have been set correctly, look at the parent
directory’s permissions. Work your way toward the root of the file system by running ls -ld .

in the current directory, moving up to the parent directory with cd .., and repeating those two

steps until you find the problem.

$ ls -ld directory/

drwxr-xr-x 2 jason users 4096 Sep 29 22:02 directory/

$ ls -l directory/

total 0

-rwxr--r-- 1 jason users 0 Sep 29 22:02 testprog

$ chmod 400 directory

$ ls -ld directory/

dr-------- 2 jason users 4096 Sep 29 22:02 directory/

$ ls -l directory/

ls: cannot access directory/testprog: Permission denied

total 0

-????????? ? ? ? ? ? testprog

$ directory/testprog

-su: directory/testprog: Permission denied

$ chmod 500 directory/

$ ls -ld directory/

dr-x------ 2 jason users 4096 Sep 29 22:02 directory/

$ ls -l directory/

total 0

-rwxr--r-- 1 jason users 0 Sep 29 22:02 testprog

$ directory/testprog

This program ran successfully.

Default Permissions and the File Creation Mask

The file creation mask, also known as the umask, determines the default permissions of new

files and directories. The umask is typically set by the system administrator; however, an

individual user may override the setting by including a umask statement in his or her account's

initialization files.

If no mask is applied, new directories receive 777 (rwxrwxrwx) permissions and new files

receive 666 (rw-rw-rw-) permissions. When the umask is applied to these base permissions, it

disables, or masks, certain permissions. For example, a umask of 000 will disable, or mask, zero

bits. In this case, new directories receive 777 permissions and new files receive 666
permissions. At the other extreme, a umask of 777 disables all permissions bits. New files and

directories receive 000 permissions in this instance.

42

umask [-S] [mode] Sets the file creation mask to a mode if specified. If a mode is omitted,

the current mode will be displayed. Using the -S argument allows umask to display or set the

mode with symbolic notation.

A quick way to estimate how a umask mode affects default permissions is to subtract the octal

umask mode from 777 in the case of directories, or 666 in the case of files. The following is an

example of a 022 umask, which is typically the default umask used by Linux distributions or set

by system administrators.

Table 13: Creation Permission Estimation

Directory File

 777 666 Base Permission

-022 -022 Subtract the umask

 755 644 Creation Permission

Using a umask of 002 is ideal for working with members of your group. When files or directories

are created, the permissions allow members of the group to manipulate those files and
directories.

Table 14: Creation Permission Estimation

Directory File

 777 666 Base Permission

-002 -002 Subtract the umask

 775 664 Creation Permission

Here is another possible umask to use for working with members of your group. By using 007,

no permissions are granted to users outside of the group.

Table 15: Creation Permission Estimation

Directory File

 777 666 Base Permission

-007 -007 Subtract the Umask

 770 660 * Creation Permission

Again, using this octal subtraction method is a good estimation. You can see that the method
breaks down with the umask mode of 007. In reality, to get an accurate result each time, you

need to convert the octal permissions into binary values. From there, you use a bitwise NOT
operation on the umask mode and then perform a bitwise AND operation against that and the

base permissions. Another way to think of this is that the umask disables the values specified. A

 43

umask of 007 effectively means "disable all of the bits for the other users." A umask of 022

means "disable the write bits for the group and others."

The following table contains all the resulting permissions created by each one of the eight mask
settings. Note that the most common and practical umask modes to use are 022, 002, 077, and

007.

Table 16: umasks and Resulting Permissions

Octal Binary
Directory

Permissions
File Permissions

0 000 rwx rw-

1 001 rw- rw-

2 010 r-x r--

3 011 r-- r--

4 100 -wx -w-

5 101 -w- -w-

6 110 --x ---

7 111 --- ---

Special Modes

When the umask command is queried for the current setting, it returns four characters instead of

three. The following example shows the umask being clearly set to 002, but umask returns 0022.

$ umask 022

$ umask

0022

Until now, you have only been introduced to permissions for user, group, and other. However,
there is a class of special modes called setuid, setgid, and sticky. These special modes are

declared by prepending a character to the octal mode that you normally use with umask or

chmod. The important point here is to know that umask 022 is the same as umask 0022.

Likewise, chmod 644 is the same as chmod 0644.

The setuid permission allows the program to run as the owner of the file, not the user

executing it. One example of where this permission is used is with the passwd command. The

passwd command allows a user to change his or her own password, but it requires superuser

privileges to modify the /etc/passwd and /etc/shadow files.

44

Prepend the number 4 when using octal mode to enable the setuid permission. For symbolic

mode, use u+s.

$ ls -ld /usr/bin/passwd

-rwsr-xr-x 1 root root 47032 Jul 26 2013 /usr/bin/passwd

$ chmod 4555 script

$ ls -l script

-r-sr-xr-x. 1 jason users 0 Jun 7 18:11 script

Similar to the setuid permission, the setgid permission allows a program to run with the group

of the file, not the group of the user executing it. A Linux command that uses such a permission
is the locate command.

When the setgid is used on a directory, it causes new entries in that directory to be created

with the same group as the directory. When working with groups, using setgid on shared

directories can prevent someone from accidentally creating a file in their default group instead of
the intended group.

Prepend the number 2 when using octal mode to enable the setgid permission. For symbolic

mode, use g+s.

$ ls -l /usr/bin/locate

-rwx--s--x 1 root slocate 35548 Oct 10 2012 /usr/bin/locate

$ chmod 2555 script

$ ls -l script

-r-xr-sr-x 1 jason users 0 Jun 7 18:28 script

$ mkdir salesdir

$ chgrp sales salesdir

$ chmod g+rwx salesdir

$ ls -ld salesdir/

drwxrwxr-x 2 jason sales 4096 Jun 7 18:29 salesdir/

$ touch salesdir/file-before-setgid

$ ls -l salesdir/

total 0

-rw-r--r-- 1 jason users 0 Jun 7 18:29 file-before-setgid

$ chmod g+s salesdir

$ ls -ld salesdir

drwxrwsr-x 2 jason sales 4096 Jun 7 18:29 salesdir

$ touch salesdir/file-after-setgid

$ ls -l salesdir/

total 0

-rw-r--r-- 1 jason sales 0 Jun 7 18:30 file-after-setgid

-rw-r--r-- 1 jason users 0 Jun 7 18:29 file-before-setgid

$

 45

The sticky bit prevents one user from deleting another user's files even if he or she would
normally have permission to do so. The most common place you will see the sticky bit employed
is on the /tmp and /var/tmp directories.

Prepend the number 1 when using octal mode to enable the sticky bit. For symbolic mode, use

+t.

$ ls -ld /tmp

drwxrwxrwt 11 root root 20480 Jun 6 18:17 /tmp

$ ls -ld /var/tmp

drwxrwxrwt 4 root root 4096 Jun 7 16:46 /var/tmp

$ chmod 1777 tmp

$ ls -ld tmp

drwxrwxrwt 2 jason users 4096 Jun 7 16:50 tmp

Table 17: Special Modes

Octal Permission

1 sticky bit

2 setgid

4 setuid

umask Examples

In the following example, new files and directories are created after setting the umask. Notice

that the default file and directory permissions depend on the umask setting.

$ umask

0022

$ umask -S

u=rwx,g=rx,o=rx

$ mkdir directory

$ touch file

$ ls -l

total 4

drwxr-xr-x 2 jason users 4096 Jun 5 00:03 directory

-rw-r--r-- 1 jason users 0 Jun 5 00:03 file

$ rmdir directory

$ rm file

$ umask 007

$ umask

46

0007

$ umask -S

u=rwx,g=rwx,o=

$ mkdir directory

$ touch file

$ ls -l

total 4

drwxrwx--- 2 jason users 4096 Jun 5 00:04 directory

-rw-rw---- 1 jason users 0 Jun 5 00:04 file

 47

Chapter 7 Viewing and Editing Files

In a preceding chapter, you learned that the cat command displays the entire contents of a file.

If you would like to navigate the contents of a file, you can use a pager utility such as more or

less. To display the top portion of a file, use the head command. The tail command allows

you to display the end of a file.

cat file Concatenate (display) the entire contents of a file.

more file Browse through a text file. Press the Spacebar to advance to the next page. Press

Enter to advance to the next line. Type q to quit viewing the file.

less file Like more, but allows backward movement and pattern searches.

head file Display the beginning portion of file.

tail file Display the ending portion of file.

$ cat goals.txt

 1) Write a book.

 2) Travel the world.

 3) Learn a foreign language.

 4) Learn to play an instrument.

 5) Run a marathon.

 6) Skydive.

 7) Start a business.

 8) Swim with dolphins.

 9) Own a home.

10) Be an extra in a movie.

11) Win an Olympic medal.

12) Be a millionaire.

$ head goals.txt

 1) Write a book.

 2) Travel the world.

 3) Learn a foreign language.

 4) Learn to play an instrument.

 5) Run a marathon.

 6) Skydive.

 7) Start a business.

 8) Swim with dolphins.

 9) Own a home.

10) Be an extra in a movie.

48

$ tail goals.txt

 3) Learn a foreign language.

 4) Learn to play an instrument.

 5) Run a marathon.

 6) Skydive.

 7) Start a business.

 8) Swim with dolphins.

 9) Own a home.

10) Be an extra in a movie.

11) Win an Olympic medal.

12) Be a millionaire.

$ more goals.txt

 1) Write a book.

 2) Travel the world.

 3) Learn a foreign language.

 4) Learn to play an instrument.

 5) Run a marathon.

...

The head and tail commands display 10 lines by default. To specify a specific number of lines

to display, append -N to the command where N is the number of lines you want to display. For

example, to display the first line in a file, run head -1 file.

$ head -2 goals.txt

 1) Write a book.

 2) Travel the world.

$ tail -1 goals.txt

12) Be a millionaire.

$

If you want to view files as they are being updated, use tail -f file. The -f flag makes the

tail command follow the file as it grows. This is great for viewing log files. You can also use

the less command. After running less file, type F to start following the file as it grows.

$ tail -f /opt/nginx/logs/access.log

10.10.10.10 - - [28/Jun/2014:18:38:48 +0000] "GET / HTTP/1.1" 200 612 "-"

"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/35.0.1916.114 Safari/537.36"

11.11.11.11 - - [28/Jun/2014:18:39:16 +0000] "GET / HTTP/1.1" 200 612 "-"

"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/35.0.1916.114 Safari/537.36"

...

 49

Editing Files

An extremely simple, but ample text editor is nano. It doesn't have advanced editing features,
but if you are looking to make simple changes to a file, this will surely work. To edit an existing
file or create a new one, run nano file-name. When it loads, you will see the contents of the

file and a list of available commands at the bottom of the screen. The caret symbol represents
the Ctrl key. For example, to exit the editor type Ctrl-x, and to save the file type Ctrl-o. For

help, type Ctrl-g.

In addition to using the navigation commands listed at the bottom of the screen, you can simply
use the arrow keys, the Page Up and Page Down keys, and the Home and End keys. To add
text, simply type it. Deleting text is as simple as using the Delete and Backspace keys. To
delete an entire line, use Ctrl-k.

 GNU nano 2.2.6 File: to-do.txt

This file contains my to-do list.

* Mow the lawn.

* Take over the world.

 [Read 3 lines]

^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text ^T To Spell

The Vim Editor

If you are looking for an editor that has advanced editing capabilities, and one that you can use
at the command line, use vi or Emacs. On a Linux system, when you attempt to use vi, you will
actually be using Vim, short for vi improved. The vi command is typically symlinked to Vim. The

Vim editor is compatible with the commands found in the vi editor, which was originally created
for the Unix operating system. Vim includes additional features not found in vi, including syntax
highlighting, the ability to edit files over the network, multi-level undo and redo, and screen
splitting. One advantage of learning Vim or vi is that you can apply the key mappings to other
commands, such as man, more, less, and view.

Command Mode

One unique characteristic of the vi and Vim editors is the concept of modes. The three modes in
Vim are command, insert, and line. Vim starts in command mode. To get back to command
mode at any time, simply press the Escape key. When in command mode, the keys sent to the
editor do not end up in the file, but are rather interpreted as commands. Command mode allows
you to navigate about the file, perform searches, delete text, copy text, paste text, and more.

50

Table 18: Vim Navigation Keys

Action Key

Move up one line. k

Move down one line. j

Move left one character. h

Move right one character. l

Move right one word. w

Move left one word. b

Move to the beginning of the line. ^

Move to the end of the line. $

The commands are case sensitive. For example, lowercase L moves the cursor right one
character, but uppercase L moves the cursor to the bottom of the window. Even though the
original vi editor did not allow you to use arrow keys, Vim does. Even though you can use the
arrow keys, some argue that using the original vi key bindings can be faster since your hand
does not have to leave the home row.

Insert Mode

Insert mode allows you to actually type text in a file. To enter insert mode, press i, I, a, or A.
After you have entered the desired text, you can press the Escape key to return to command
mode.

Table 19: Vim Insert Mode

Action Key

Insert at the current position. i

Insert at the beginning of the line. I

Append after the cursor position. a

Append at the end of the line. A

Line Mode

Line mode, sometimes called command line mode, is accessed from command mode by typing
a colon. Line mode allows you to save a file, exit the editor, replace text, and perform some
forms of navigation. The following are some of the most common line mode commands you will
want to familiarize yourself with.

 51

Table 20: Vim Line Mode Commands

Action Key

Writes, or saves, the file. :w

Forces the file to be saved even if the write
permission is not set.

:w!

Quits the editor. This fails if there are
unsaved changes to the file.

:q

Quit without saving the file. :q!

Write and quit. :wq!

Same as :wq! :x

Position the cursor at line n. :n

Position the cursor on the last line of the file. :$

Turn on line numbering. :set nu

Turn off line numbering. :set nonu

Access the built-in help documentation. :help [subcommand]

Repeating Commands

Most commands can be repeated by preceding them with a number. For example, to move the
cursor down three lines, type 3j. To insert the same piece of text 20 times, type 20i followed by

the desired text, and press Escape when you are finished. The insert operation will repeat 20
times. To insert a line of underscores, type 80i_ and press Escape.

Additional Commands

The following tables list some additional key combinations to use while in the command mode.

Table 21: Vim Command Mode—Deleting Text

Action Key

Delete a character. x

Delete a word. dw

Delete a line. dd

52

Action Key

Delete from the current position to the end of
the line.

D

Table 22: Vim Command Mode—Changing Text

Action Key

Replace the current character. r

Change the current word. cw

Change the current line. cc

Change the text from the current position to
the end of the line.

c$

Same as c$. C

Reverse the case of the character at the
current position.

~

Table 23: Vim Command Mode—Copying and Pasting Text

Action Key

Yank, or copy, the current line. yy

Yank the <position>. To yank a word, type

yw.

y<position>

Paste the most recent yanked or deleted text. p

Delete from the current position to the end of
the line.

D

Table 24: Vim Command Mode—Undo and Redo

Action Key

Undo u

Redo Ctrl-r

 53

Table 25: Vim Command Mode—Searching

Action Key

Start a forward search for <pattern>. /<pattern>

Start a reverse search for <pattern>. ?<pattern>

Emacs

Another powerful text editor that you can use at the command line is Emacs. Emacs relies
heavily on compound keyboard shortcuts. In the Emacs documentation, you will see C-
<character>, which means press and hold Ctrl and then press <character>. For example, if

you see C-x, that means hold down Ctrl and press x. You will also see sequences, like C-x u.

That means hold down Ctrl and press x, release the Ctrl key, and then press u. C-x C-c means

press and hold Ctrl, press x, and then press c while still holding Ctrl.

You will also encounter M-<character>, which means hold down the meta key, which is the Alt

key, and press <character>. A substitute to holding down Alt as the meta key is to press and

release the Esc key instead. For example, you can press and hold Alt and press b to represent
M-b, or you can press Esc followed by the b key. Some terminal emulators intercept the Alt key,

so you may be forced to use Esc as the meta key in some situations.

Table 26: Emacs Basic Keyboard Shortcuts

Action Key

Help. C-h

Exit. C-x C-c

Save the file. C-x C-s

Access the built-in tutorial. C-h t

Describe <key>. C-h k <key>

Repeat <command> N times. C-u N <command>

Table 27: Emacs Keyboard Shortcuts—Navigation

Action Key

Move to the previous line. C-p

Move to the next line. C-n

Move backward one character. C-b

Move forward one character. C-f

54

Action Key

Move forward one word. M-f

Move backward one word. M-b

Move to the beginning of the line. C-a

Move to the end of the line. C-e

Move to the beginning of the file. M-<

Move to the end of the file. M->

Table 28: Emacs Keyboard Shortcuts—Deleting Text

Action Key

Delete a character. C-d

Delete a word. M-d

Table 29: Emacs Keyboard Shortcuts—Copying and Pasting Text

Action Key

Kill, or cut, the rest of the current line. C-k

Yank, or paste, from the previously killed text. C-y

Undo. Repeat for multiple-level undo. C-x u

Table 30: Emacs Keyboard Shortcuts—Searching

Action Key

Start a forward search. Type the text you are
looking for and press C-s to move to the next

occurrence. Press Enter to stop searching.

C-s

Start a reverse search. C-r

Graphical Editors

Nano, Vim, and Emacs are great for editing files at the command line. However, if you are using
a GUI, you have many more options, but don't think that the effort you put into learning Vim or
Emacs is worthless in a graphical environment. The graphical version of Vim is gVim. If you are
using a GUI, Emacs detects this and starts in graphical mode.

 55

If you are looking for a word processor, consider LibreOffice or AbiWord. LibreOffice is an office
suite which not only includes a word processor, but ships with a spreadsheet program, a
database application, and presentation software.

There are also specialty editors available for the Linux operating system. If you are looking for
an IDE or a source code editor, consider jEdit, Geany, Kate, or Sublime Text. The editors listed
in the following table are just a sampling of what is available.

Table 31: Graphical Editors

Description Editor

Graphical version of Vim. gVim

Graphical version of Emacs. Emacs

A Notepad-like editor for the GNOME desktop
environment.

gedit

The default text editor for the KDE desktop
environment.

KEdit

Word processor. AbiWord

Office suite. LibreOffice

Programmer’s text editor. jEdit

A small and fast IDE. Geany

A multi-document editor. Kate

An editor for source code. Sublime Text

56

Chapter 8 Deleting, Moving, and Renaming
Files and Directories

Files and directories can be deleted with the rm command.

rm file Remove file.

rm -r directory To remove a directory with rm, the -r argument is required. The -r

argument tells rm to remove files and directories recursively.

rm -f file Use the -f option to force removal without prompting for confirmation.

Search patterns in the form of wildcards can be used with commands like rm and ls. The most

commonly used wildcards are the asterisk and the question mark. The asterisk matches
anything, while the question mark matches a single character. Remember that files and
directories that begin with a period are considered hidden and will not be matched by the
asterisk. To include the hidden file in your search pattern, start your search with a period.

$ ls

Desktop Documents Downloads goals.txt Music Pictures to-do.txt

$ ls t*

to-do.txt

$ rm t*

$ ls t*

ls: cannot access t*: No such file or directory

$ ls g*txt

goals.txt

$ ls g????????

goals.txt

$ ls g?

ls: cannot access g?: No such file or directory

$ ls -d .*

. .. .bash_history .bash_logout .bashrc .hidden .profile

$ rm .hidden

$

The cp command is used to copy files and directories. To create a copy, run cp source_file
destination_file. You can also copy one or more files to a directory by ending the cp

command with a destination directory.

cp source_file destination_file Copy the source_file to the destination_file.

 57

cp source_file1 [source_fileN ...] destination_directory Copy the source_files

to the destination_directory.

cp -i source_file destination_file Use the -i option of cp to run in interactive mode. If

the destination_file exists, cp will give you the opportunity to abort the operation or continue

by overwriting the destination_file.

cp -r source_directory destination_directory The -r option of cp causes the

source_directory to be recursively copied to the destination_directory. If the

destination_directory exists, the source directory is copied into the

destination_directory. Otherwise the destination_directory will be created with the

contents of the source_directory.

$ ls

1file

$ cp 1file 2file

$ ls

1file 2file

$ mkdir 1dir

$ cp 1file 2file 1dir

$ ls 1dir/

1file 2file

$ cp -i 2file 1file

cp: overwrite `1file'? n

$ cp -r 1dir 2dir

$ ls 2dir/

1file 2file

$ cp 1dir 3dir

cp: omitting directory `1dir'

$ mkdir 3dir

$ cp -r 1dir 2dir 3dir

$ ls 3dir

1dir 2dir

$ tree 3dir

3dir

|-- 1dir

| |-- 1file

| |-- 2file

|-- 2dir

 |-- 1file

 |-- 2file

2 directories, 4 files

$

58

To move files and directories from one location to another, use the mv command. Additionally,

the mv command is used to rename files and directories.

mv source destination Moves source to destination. If destination is a directory,

source will be moved into destination. If destination is not a directory, then source will be

renamed destination.

mv -i source destination Use the -i option of mv to run in interactive mode. If the

destination exists, mv will give you the opportunity to abort the operation or continue by

overwriting the destination.

In the following example, 1dir is renamed to 1dir-renamed using the mv command. Next,

1file is renamed to file1 and then moved into the 1dir-renamed directory. If you do not

specify the -i option to mv, it will overwrite an existing file without prompting you. This is

demonstrated by moving 1file to 2file. Finally, the -i option is demonstrated with 2file

and file1.

$ ls -F

1dir/ 1file 2dir/ 2file 3dir/

$ mv 1dir 1dir-renamed

$ ls -F

1dir-renamed/ 1file 2dir/ 2file 3dir/

$ mv 1file file1

$ ls -F

1dir-renamed/ 2dir/ 2file 3dir/ file1

$ mv file1 1dir-renamed/

$ ls -F

1dir-renamed/ 2dir/ 2file 3dir/

$ ls -F 1dir-renamed/

1file 2file file1

$ cat 1dir-renamed/1file

The contents of 1file.

$ cat 1dir-renamed/2file

The contents of 2file.

$ mv 1dir-renamed/1file 1dir-renamed/2file

$ cat 1dir-renamed/2file

The contents of 1file.

$ ls -F 1dir-renamed/

2file file1

$ mv -i 1dir-renamed/2file 1dir-renamed/file1

mv: overwrite `1dir-renamed/file1'? n

$

 59

Chapter 9 Finding, Sorting, and Comparing
Files and Directories

To locate files or directories on a Linux system, you can use the find command. You can find

files by owner, size, permissions, name, modification time, and more.

find [path...] [expression] Recursively find files and directories in path that match

expression. When running find without arguments, path is assumed to be the current

directory.

$ find

.

./.bash_history

./Pictures

./.bashrc

./Downloads

./.bash_logout

./.viminfo

./Desktop

./Documents

./goals.txt

./to-do.txt

./.profile

./Music

./Music/JohnColtrane

$

Table 32: Common find Commands

Description Command

Display items whose names match pattern

(case sensitive).

find . -name pattern

Same as -name, but not case sensitive. find . -iname pattern

Perform an -ls operation on each of the

items.

find . -ls

Display items that are number_of_days old. find . -mtime number_of_days

60

Description Command

Display items that are size number. The

number can be followed by a character, which

represents the unit of space: c for bytes,

k for kilobytes, M for megabytes, and G for

gigabytes.

find . -size number

Display items that are newer than file. find . -newer file

Run command against each of the found

items. The braces ({}) act as a placeholder for
the current file being processed.

find . -exec command {} \;

The following are examples of using the find command. You can combine multiple find options,

or expressions, to find exactly what you are looking for.

$ find /etc -name log*conf

/etc/logrotate.conf

$ find /opt -name Nginx

$ find /opt -iname Nginx

/opt/nginx

$ find /opt -iname Nginx -ls

655431 4 drwxr-xr-x 2 root root 4096 Jul 1 03:34 /opt/nginx

$ find . -mtime +11 -mtime -14

./.bashrc

./.viminfo

$ find . -size +2M

./Music/JohnColtrane/giantsteps.mp3

$ find . -type d -newer to-do.txt

.

./Music/JohnColtrane

$ find . -name *mp3 -exec mpg123 {} \;

High Performance MPEG 1.0/2.0/2.5 Audio Player for Layers 1, 2 and 3

 version 1.12.1; written and copyright by Michael Hipp and others

 free software (LGPL/GPL) without any warranty but with best wishes

Directory: ./Music/JohnColtrane/

Playing MPEG stream 1 of 1: giantsteps.mp3 ...

Title: Giant Steps

MPEG 1.0 layer III, 192 kbit/s, 44100 Hz stereo

[0:00] Decoding of giantsteps.mp3 finished.

$

 61

The find command examines each file and directory in the provided path to determine if it

matches the given expression. Sometimes this is a very quick operation if only a small number
of items have to be examined. However, if you were to run find / -name some_name, find

would examine every single file on the system and this could potentially be a slow process.
There is another utility that you can use to find items on a Linux system and it's called locate.

locate pattern Display files and directories that match pattern.

The locate command queries an index, or database, which is updated daily by a process

named updatedb. The advantage to this approach is that it's really fast since it doesn't have to

examine files and directories in real time. The disadvantage is that it is not in real time. The
locate command is great for finding files or directories that are older than a day, but it won't

find items that have just been created. Also, locate and updatedb are sometimes not installed

or enabled.

$ locate giant

/home/jason/Music/JohnColtrane/giantsteps.mp3

$ locate httpd.conf

/etc/apache2/httpd.conf

$

Sorting

Use the sort command to sort the contents of files.

Table 33: Commonly Used sort Options

Description Option

Sort the text in file. sort file

Sort by "key." Sort by the FIELD_NUM column. sort -k FIELD_NUM file

Sort in reverse order. sort -r file

Sort uniquely. No duplicates are displayed. sort -u file

$ cat random-states

Tennessee Nashville

Wyoming Cheyenne

Indiana Indianapolis

Indiana Indianapolis

Arizona Phoenix

Colorado Denver

Indiana Indianapolis

62

Georgia Atlanta

$ sort random-states

Arizona Phoenix

Colorado Denver

Georgia Atlanta

Indiana Indianapolis

Indiana Indianapolis

Indiana Indianapolis

Tennessee Nashville

Wyoming Cheyenne

$ sort -u random-states

Arizona Phoenix

Colorado Denver

Georgia Atlanta

Indiana Indianapolis

Tennessee Nashville

Wyoming Cheyenne

$ sort -k2 -u random-states

Georgia Atlanta

Wyoming Cheyenne

Colorado Denver

Indiana Indianapolis

Tennessee Nashville

Arizona Phoenix

$

Comparing

You can use the diff, sdiff, and vimdiff commands to compare files and directories. The

diff command displays just the differences, sdiff displays the two files side-by-side while

highlighting the differences, and vimdiff uses the Vim editor to display the differences. Simply

supply the command two items to compare.

$ cat random-states

Arizona Phoenix

Colorado Denver

Georgia Atlanta

Indiana Indianapolis

$ cat random-states.bak

Arizona Phoenix

Colorado Denver

 63

Georgia Savannah

Indiana Indianapolis

$ diff random-states random-states.bak

3c3

< Georgia Atlanta

> Georgia Savannah

$ sdiff random-states random-states.bak

Arizona Phoenix Arizona Phoenix

Colorado Denver Colorado Denver

Georgia Atlanta | Georgia Savannah

Indiana Indianapolis Indiana Indianapolis

$ vimdiff random-states random-states.bak

 Arizona Phoenix | Arizona Phoenix

 Colorado Denver | Colorado Denver

 Georgia Atlanta | Georgia Savannah

 Indiana Indianapolis | Indiana Indianapolis

random-states 1,1 All random-states.bak 1,1 All

"random-states.bak" 4L, 104C

$ tree

.

|-- dir1

| |-- file1

|-- dir2

 |-- file1

 |-- file2

2 directories, 3 files

$ diff dir1 dir2

Only in dir2: file2

$

In the diff output, the text following the less than sign belongs to the first file while the text

following the greater than sign belongs to the second file. Also diff provides information about

the differences in a shorthand format. The first number represents line numbers from the first
file. The next character will be a c for change, a d for deletion, or a for an addition. The final

number represents lines from the second file.

The sdiff command uses a pipe to represent changes on the same line. The less than sign is

used to denote that particular line only exists in the first file, while the greater than sign means
the line only exists in the second file.

64

Chapter 10 I/O Redirection

The Linux operating system features a concept called I/O streams. The three default I/O
streams are standard input, standard output, and standard error. When a process is launched, it
is connected to these three I/O streams, also called standard streams. By default, standard
input comes from your keyboard while standard output and standard error are displayed on your
screen. By convention, standard output is used for normal output while standard error is
reserved for error messages.

Each stream is assigned a file descriptor. A file descriptor is referenced by a number and
represents an open file. Standard input is assigned file descriptor 0, standard output is assigned

file descriptor 1, and standard error is assigned file descriptor 2. This effectively means that your

keyboard and display are treated as files. As a matter of fact, your keyboard and display can be
substituted for actual files. This layer of abstraction allows you to save output that would
normally appear on your screen to a file. It also allows you send input to a command from a file.
You can even use the output of one command as the input for another command.

Table 34: Standard Streams

Stream Abbreviation File Descriptor

standard input stdin 0

standard output stdout 1

standard error stderr 2

Many Linux commands allow you to provide input by specifying a file as an argument or by
accepting standard input. In the absence of a file, many commands expect standard input. Files,
as well as standard input, are terminated with an end of file (EOF) marker. You can produce this
EOF marker using your keyboard by typing Ctrl-d.

As an example of this behavior, let's look at the sort command. To have sort operate on a file,

supply that file as an argument as in the following example.

$ cat test.txt

e

a

c

b

d

$ sort test.txt

a

b

c

 65

d

e

$

To have sort operate on standard input, run the sort command without any arguments and

start typing text. When you are finished, type Ctrl-d to send the EOF character. The standard

input you provided will then be sorted.

$ sort

e

a

c

b

d

<Ctrl-d>

a

b

c

d

e

$

To send the standard output of one command as the standard input to another command, use a
pipe symbol (|) between the commands. The following example demonstrates sending the

output of cat text.txt as the input to the sort command.

$ cat test.txt | sort

a

b

c

d

e

$

To use the contents of a file as standard input, separate the command from the file with a less
than sign (<).

$ sort < test.txt

a

b

c

d

66

e

$

To redirect the output of a command to a file, use the greater than sign (>) followed by a file

name. If the file doesn't exist it will be created. If it does exist, it will be overwritten.

$ sort test.txt > sorted.txt

$ cat sorted.txt

a

b

c

d

e

$

If you want to append output to a file, use the double greater than sign (>>). If the file doesn't

exist, it will be created, but if it does exist, the output from the command will be appended to the
file.

$ sort test.txt >> sorted.txt

$ cat sorted.txt

a

b

c

d

e

a

b

c

d

e

$

You are not limited to just redirecting input or just redirecting output—you can do both at the
same time. The following example demonstrates reading standard input from test.txt while

redirecting standard output to sorted.txt.

$ sort < test.txt > sorted.txt

$ cat sorted.txt

a

b

c

 67

d

e

$

Table 35: Redirecting I/O

Action Format Operator

Create or overwrite file
with standard output from
cmd.

cmd > file >

Create or append to file

with standard output from
cmd.

cmd >> file >>

Use the contents of file as

standard input to cmd.

cmd < file <

By default, input redirection operates on file descriptor 0 and output redirection operates on file
descriptor 1. You can explicitly declare a file descriptor to use with redirection by immediately
preceding the operator with the file descriptor number. Do not use a space between the file
descriptor number and the redirection operator. If the file descriptor does not immediately
precede the redirection operator, it will be interpreted as another item on the command line.

To capture error messages to a file while displaying standard output to your screen, use 2>
file. You can also redirect standard output to one file while redirecting standard output to

another.

$ ls test.txt no-such-file

ls: cannot access no-such-file: No such file or directory

test.txt

$ ls test.txt no-such-file 2>errors

test.txt

$ cat errors

ls: cannot access no-such-file: No such file or directory

$ ls test.txt no-such-file 1>normal-output 2>errors

$ cat normal-output

test.txt

$ cat errors

ls: cannot access no-such-file: No such file or directory

$

Not only can you redirect output to a file, you can redirect it to another file descriptor using an
ampersand followed by the file descriptor number. Using this method, you can combine
standard output and standard error using 2>&1. Do not use spaces.

68

The following command means, "send the standard output of the ls command to the

combined-output file and append standard error to standard output." All output will be sent to

the combined-output file because standard error is redirected to standard output and standard

output is redirected to combined-output.

$ ls test.txt no-such-file > combined-output 2>&1

$ cat combined-output

ls: cannot access no-such-file: No such file or directory

test.txt

$

If you do not want to display the output of a command to your screen or save it to a file, you can
redirect the output to the null device, /dev/null. This special file simply discards any input that

is sent to it. The null device is sometimes referred to as the "black hole" or "bit bucket". The
following example redirects the errors from sort to the null device.

$ ls test.txt no-such-file

ls: cannot access no-such-file: No such file or directory

test.txt

$ ls test.txt no-such-file 2>/dev/null

test.txt

$

 69

Chapter 11 Additional Command Line
Concepts

An environment variable is a name-value pair. Programs can use data from environment
variables to determine how to behave in certain situations. For example, the default command
used to display man pages can be altered by setting a value for the PAGER environment

variable.

Environment variables are case-sensitive; however, by convention they are in all uppercase
letters. To view the value of a known environment value, run echo $VAR_NAME or printenv
VAR_NAME. You can use the env or printenv commands without arguments to display all the

environment variables that are currently set.

$ echo $HOME

/home/jason

$ printenv HOME

/home/jason

$ printenv

SHELL=/bin/bash

TERM=xterm

USER=jason

MAIL=/var/mail/jason

PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

PWD=/home/jason

LANG=en_US.UTF-8

PS1=$

SHLVL=1

HOME=/home/jason

LOGNAME=jason

OLDPWD=/home/jason

$ env

SHELL=/bin/bash

TERM=xterm

USER=jason

MAIL=/var/mail/jason

PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

PWD=/home/jason

LANG=en_US.UTF-8

PS1=$

SHLVL=1

HOME=/home/jason

70

LOGNAME=jason

OLDPWD=/home/jason

$

When a process is launched, it inherits the exported environment variables of its parent
process. An environment variable that is set only affects the current running process, unless it is
explicitly exported. In the following example, the PAGER environment variable is set to less for

the current shell. If a subprocess is started without that variable being exported, such as another
instance of the Bash shell, that environment variable is not inherited. When PAGER is exported

and a new Bash shell is started, it is available to that process. To remove an environment
variable, use the unset command.

$ echo $PAGER

$ PAGER=less

$ echo $PAGER

less

$ bash

$ echo $PAGER

$ exit

exit

$ export PAGER=less

$ bash

$ echo $PAGER

less

$ exit

exit

$ echo $PAGER

less

$ unset PAGER

$ echo $PAGER

$

Table 36: Common Environment Variables

Use Variable

The program used to edit files. EDITOR

The user's home directory. HOME

The user ID or login ID of the current user. LOGNAME

 71

Use Variable

The location of the user's mailbox on the local
system.

MAIL

The old, or previous, working directory. OLDPWD

The search path for commands. PATH

The program used for paging through a file. PAGER

The primary prompt string. PS1

The present working directory. PWD

The user ID or login ID of the current user. USER

Aliases

You can use keyboard shortcuts, called aliases, at the command line. You can save yourself
some time and typing by creating aliases for commands that you repeat often, that are long, that
are hard to type, or that are difficult to remember. You can even use aliases to fix common
typing mistakes. Some people even employ aliases to make Linux behave like another
operating system they are familiar with.

alias [alias_name[=value]] Without any arguments, the alias command lists the current

aliases that are in your environment. Use alias alias_name=value to create a new alias.

unalias alias_name Remove alias_name. Use unalias -a to delete all aliases.

$ alias ll='ls -l'

$ alias

alias ll='ls -l'

$ ls -l

total 32

drwxrwxr-x 2 jason jason 4096 Jun 21 22:01 Desktop

drwxrwxr-x 2 jason jason 4096 Jun 21 22:01 Documents

drwxrwxr-x 2 jason jason 4096 May 17 13:37 Downloads

-rw-rw-r-- 1 jason jason 274 Jun 28 14:52 goals.txt

drwxrwxr-x 3 jason jason 4096 Jun 21 22:05 Music

drwxrwxr-x 2 jason jason 4096 Jun 21 22:01 Pictures

-rw-rw-r-- 1 jason jason 73 Jun 29 02:30 to-do.txt

$ ll

total 32

drwxrwxr-x 2 jason jason 4096 Jun 21 22:01 Desktop

72

drwxrwxr-x 2 jason jason 4096 Jun 21 22:01 Documents

drwxrwxr-x 2 jason jason 4096 May 17 13:37 Downloads

-rw-rw-r-- 1 jason jason 274 Jun 28 14:52 goals.txt

drwxrwxr-x 3 jason jason 4096 Jun 21 22:05 Music

drwxrwxr-x 2 jason jason 4096 Jun 21 22:01 Pictures

-rw-rw-r-- 1 jason jason 73 Jun 29 02:30 to-do.txt

$ alias bu='/usr/local/bin/backup-database.sh'

$ bu

Starting database backup.

...

Database backup complete.

$ alias

alias bu='/usr/local/bin/backup-database.sh'

alias ll='ls -l'

$

Aliases only exist for your current session. So, if you were to create an alias, log out, and log in
again, that alias would not be available. To make them persist between sessions, you have to
add them to your personal initialization files.

Personal Initialization Files

To save customizations to your shell environment, place them in a personal initialization file. If
you are using Bash, you can place your customizations in ~/.bashrc or ~/.bash_profile.

The ~/.bash_profile file is read and executed for login sessions. When bash is not started

as a login shell, for example when you open a new tab in your terminal emulator application,
~/.bashrc is read and executed. If you do not want or need this distinction, you can make

~/.bash_profile source ~/.bashrc and place all your customizations in ~/.bashrc. Using

this method will provide the same environment whether it's a login shell or not. Personal
initialization files are often referred to as "dot files."

$ cat ~/.bash_profile

if [-f ~/.bashrc]; then

 source ~/.bashrc

fi

$

The source command reads and executes the commands from the given file in the current

shell. You can also source files by using a period, so source file1 and . file1 are the same

thing. The if statement in the preceding example simply checks to see if the ~/.bashrc file

exists before trying to source it.

 73

$ echo "alias ll='ls -l'" >> ~/.bashrc

$ cat ~/.bashrc

A line that begins with a pound sign is a comment.

Place customizations in this file.

alias ll='ls -l'

$. ~/.bashrc

$ alias ll

alias ll='ls -l'

$

Shell History

The commands that you execute at the command line are preserved in your shell history. Your
history is retained in memory by Bash until your current session is ended. At that time, your
history is saved to the ~/.bash_history file. Different shells save history in different files, but

they usually include the word history and are stored as a dot file in your home directory. Also,
you can set the HISTSIZE environment variable to control the number of commands to save in

your shell history. The default value is 500.

history When the history command is executed without arguments, it displays a list of

commands in your shell history.

!N Repeat the command associated with line number N.

!! Repeat the previous command line.

!pattern Repeat the most recent command starting with pattern.

$ history

1 ls

2 diff random-states random-states.bak

3 history

$!1

ls

Desktop Documents Downloads link-to-to-do Music program tmp to-

do.txt

$ echo $SHELL

/bin/bash

$!!

echo $SHELL

/bin/bash

$!d

diff random-states random-states.bak

74

3c3

< Georgia Atlanta

> Georgia Savannah

$

You can search through your shell history by typing Ctrl-r. This starts a reverse search

indicated by (reverse-i-search)`': and allows you to type in a portion of a command in your

history to retrieve. To keep traversing your history for other commands that match your search
pattern, continue to press Ctrl-r. Once you find a command you want to execute, press Enter.

If you want to change the command line before executing it, press Esc. To completely abandon
your reverse search, type Ctrl-c.

$ diff random-states random-states.bak

3c3

< Georgia Atlanta

> Georgia Savannah

(reverse-i-search)`di': diff random-states random-states.bak

3c3

< Georgia Atlanta

> Georgia Savannah

$

Tab Completion

To invoke tab completion, simply start typing a command and press the Tab key. Tab
completion attempts to complete partially typed commands when possible. If there are many
possibilities, those options can be displayed by pressing Tab twice. You can continue to type
and press the Tab key again at any time.

In addition to completing commands, you can use tab completion to complete file and directory
names. This can be useful when a file or directory is used as an argument to a command like
ls, cat, rm, and others.

$ # Typing jo[Tab][Tab] results in:

$ jo

jobs join

$ # Typing job[Tab][Enter] results in:

$ jobs

 75

[1]+ Running ./db-backup.sh &

$ ls r*

random-states random-states.bak

$ # Typing cat[Space]r[Tab][Enter] results in:

$ cat random-states

Tennessee Nashville

Wyoming Cheyenne

Indiana Indianapolis

Indiana Indianapolis

Arizona Phoenix

Colorado Denver

Indiana Indianapolis

Georgia Atlanta

$

Line Continuation

If you want to create a command line that visually spans multiple lines but acts as a single
command, use a backslash at the end of each line you want to continue. When the backslash
appears at end of a command line, it acts as the line continuation character. If you use this at
the command prompt, the continued lines will be prefixed with the greater than symbol. You
may encounter this when reading documentation or examining shell scripts.

$ diff \

> random-states \

> random-states.bak

3c3

< Georgia Atlanta

> Georgia Savannah

$ diff random-states random-states.bak

3c3

< Georgia Atlanta

> Georgia Savannah

$

76

Chapter 12 Processes and Jobs

The ps command is used to list the currently running processes on a Linux system. If you run ps
without any arguments, it displays the processes that are running as you and associated with
your terminal. If you were to connect to a Linux server twice, you would see different output from
the ps command. You might see the following for the first session, which is using pts/0

(pseudo terminal 0).

$ ps

 PID TTY TIME CMD

 1309 pts/0 00:00:00 bash

 1635 pts/0 00:00:00 ps

$

The following is the output from ps on the second connection, which is using pts/1.

$ ps

 PID TTY TIME CMD

 1721 pts/1 00:00:00 bash

 1821 pts/1 00:00:00 ps

$

If you want to display all of your running processes, regardless of the associated terminal or lack
thereof, use the command ps -u username.

$ ps -u jason

 PID TTY TIME CMD

 1308 ? 00:00:00 sshd

 1309 pts/0 00:00:00 bash

 1720 ? 00:00:00 sshd

 1721 pts/1 00:00:00 bash

$

To see every process running on the system, use the command ps -e.

$ ps -e | head

 PID TTY TIME CMD

 1 ? 00:00:00 init

 2 ? 00:00:00 kthreadd

 3 ? 00:00:00 ksoftirqd/0

 6 ? 00:00:00 migration/0

 77

 7 ? 00:00:00 watchdog/0

 8 ? 00:00:00 cpuset

 9 ? 00:00:00 khelper

 10 ? 00:00:00 kdevtmpfs

 11 ? 00:00:00 netns

$

By default, the information provided by ps is rather sparse. Typically when using ps you will

supply additional arguments to display more detailed information. The following are some of the
most common options to use with ps.

Table 37: Commonly Used PS Options

Description Option

Display all processes. -e

Use a full format listing. -f

Display processes for username -u <username>

Display process information for process ID
(PID).

-p <PID>

Display processes in a hierarchy (tree). -H

Display processes in a hierarchy using ASCII
art.

--forest

The following table illustrates some useful ways to combine the preceding options.

Table 38: Commonly Used PS Commands

Description Command

Display all processes. ps -e

Display all processes using a full format
listing.

ps -ef

Display all processes in a tree format. ps -eH

Display all processes in a tree format with
ASCII art.

ps -e -forest

Display processes running for username. ps -u <username>

Display a full-format listing for process ID
(PID).

ps -fp <PID>

78

The following demonstrates output from various ps commands.

$ ps

 PID TTY TIME CMD

 1309 pts/0 00:00:00 bash

 2096 pts/0 00:00:00 ps

$ ps -f

UID PID PPID C STIME TTY TIME CMD

jason 1309 1308 0 15:15 pts/0 00:00:00 -bash

jason 2102 1309 0 15:45 pts/0 00:00:00 ps -f

$ ps -p 1309

 PID TTY TIME CMD

 1309 pts/0 00:00:00 bash

$ ps -fp 1309

UID PID PPID C STIME TTY TIME CMD

jason 1309 1308 0 15:15 pts/0 00:00:00 -bash

$ ps -e | head

 PID TTY TIME CMD

 1 ? 00:00:00 init

 2 ? 00:00:00 kthreadd

 3 ? 00:00:00 ksoftirqd/0

 6 ? 00:00:00 migration/0

 7 ? 00:00:00 watchdog/0

 8 ? 00:00:00 cpuset

 9 ? 00:00:00 khelper

 10 ? 00:00:00 kdevtmpfs

 11 ? 00:00:00 netns

$ ps -ef | head

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 15:14 ? 00:00:00 /sbin/init

root 2 0 0 15:14 ? 00:00:00 [kthreadd]

root 3 2 0 15:14 ? 00:00:00 [ksoftirqd/0]

root 6 2 0 15:14 ? 00:00:00 [migration/0]

root 7 2 0 15:14 ? 00:00:00 [watchdog/0]

root 8 2 0 15:14 ? 00:00:00 [cpuset]

root 9 2 0 15:14 ? 00:00:00 [khelper]

root 10 2 0 15:14 ? 00:00:00 [kdevtmpfs]

root 11 2 0 15:14 ? 00:00:00 [netns]

$ ps -fu www-data

UID PID PPID C STIME TTY TIME CMD

www-data 1060 1057 0 15:15 ? 00:00:00 /usr/sbin/apache2 -k start

www-data 1061 1057 0 15:15 ? 00:00:00 /usr/sbin/apache2 -k start

www-data 1062 1057 0 15:15 ? 00:00:00 /usr/sbin/apache2 -k start

 79

A command similar to running ps with the -H or --forest options is pstree.

$ pstree | head

init-+-accounts-daemon---{accounts-daemon}

 |-acpid

 |-apache2-+-apache2

 | `-2*[apache2---26*[{apache2}]]

 |-at-spi-bus-laun-+-dbus-daemon

 | `-3*[{at-spi-bus-laun}]

 |-at-spi2-registr---{at-spi2-registr}

 |-atd

 |-console-kit-dae---64*[{console-kit-dae}]

 |-cron

$

The ps command displays a point-in-time snapshot of the running processes. If you want an

updating display of processes, use top or htop. The top and htop commands provide a

system summary and process list. The commands are interactive, so while the program is
running, you can sort processes by CPU usage, memory usage, or even kill a given process.

$ top

top - 16:05:29 up 50 min, 2 users, load average: 0.00, 0.01, 0.05

Tasks: 88 total, 1 running, 87 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.7%us, 0.2%sy, 0.3%ni, 97.9%id, 0.8%wa, 0.0%hi, 0.0%si, 0.0

Mem: 503444k total, 346020k used, 157424k free, 45748k buffers

Swap: 0k total, 0k used, 0k free, 176524k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 974 root 20 0 285m 29m 9444 S 2.0 6.0 0:18.67 Xorg

 1440 lightdm 20 0 577m 19m 11m S 2.0 3.9 0:07.14 unity-

greeter

 1 root 20 0 24596 2392 1268 S 0.0 0.5 0:00.34 init

...

The top command will be on any Linux system you encounter; however, you may have to install

the htop command, as it is typically not a part of the base set of packages installed on most

distributions.

Jobs

By default, when you execute a program at the command line, it runs in the foreground. While
this program, or foreground process, is running, you aren't able to execute any other

80

commands. Once the program is finished, a new command prompt is displayed, ready to
execute your next command. Many commands take anywhere from a fraction of a second to
just a few seconds to run. However, you may want to execute a long running program and
continue to perform other work in the meantime. To start a program in the background, end the
command line with an ampersand. When you start a program in the background, the command
prompt is immediately returned and allows you to continue other commands. These background
programs and processes are often referred to as jobs.

Table 39: Job Control

Description Command

Start command in the background. command &

Kill the foreground process. Ctrl-c

Suspend the foreground process. Ctrl-z

Background a suspended process. bg [%num]

Foreground a backgrounded process. fg [%num]

Kill a process by job number or PID. kill [%num]

List all jobs or %num job. jobs [%num]

When a program is started in the background, two numbers are returned before the new prompt
is displayed. Those two pieces of information are the job number, which is enclosed in brackets,
and the process ID (PID). Job numbers can be referenced by preceding them with a percent
sign. The following example demonstrates starting multiple processes in the background.

 $./long-running-proc &

[1] 2793

$./long-running-proc &

[2] 2795

$./long-running-proc &

[3] 2807

$./long-running-proc &

[4] 2809

$ jobs

[1] Done ./long-running-proc &

[2] Running ./long-running-proc &

[3]- Running ./long-running-proc &

[4]+ Running ./long-running-proc &

$

In the output of the jobs command, you will notice a plus sign and a minus sign. The plus sign

represents the current job, while the minus sign represents what is considered to be the

 81

previous job. The current job is the last job that was started in the background or the most
recent process that was stopped while it was running in the foreground. You can reference the
current job by using double percent signs (%%) or a percent sign followed by a plus sign (%+).

The previous job can be accessed by using a percent sign followed by a minus sign (%-). When

working with the fg and bg commands, the current job is operated upon unless you explicitly

specify a different job.

In the preceding output of the jobs command, job number 1 is reported as being done while the

other jobs are in a running state. The shell reports job statuses right before a new prompt is
displayed. The shell will not interrupt your current command line, even if it is empty, to report
that a job has completed. To force a new prompt to be displayed, press the Enter key. If any of
your jobs have completed, a status will be displayed before your new prompt is presented. The
following is an example of that behavior.

$ <ENTER>

$ <ENTER>

[2] Done ./long-running-proc &

$ jobs

[3]- Running ./long-running-proc &

[4]+ Running ./long-running-proc &

$

In order to return a job to the foreground, use the fg command followed by a percent sign and

job number. A shorthand way to perform the exact same task is to type a percent sign followed
by the job number on the command line. So, fg %2 and %2 are equivalent.

Remember that the current job can be referenced by %% or %+. Also, the fg command operates

on the current job unless another job is supplied. The following four commands are identical.

$ fg

$ fg %%

$ fg %+

$ %%

The following demonstrates bringing job number three into the foreground.

$ jobs

[3]- Running ./long-running-proc &

[4]+ Running ./long-running-proc &

$ fg %3

./long-running-proc

To pause or suspend the foreground process, type Ctrl-z. A job that has been suspended can

be resumed in the background or foreground. To resume a suspended job in the background,
type the job specification followed by an ampersand, or use the bg command followed by the job

82

specification. If you want to background the process that was most recently suspended, you can
omit the job specification as bg will operate on the current job. To resume the job in the

foreground, use the fg command or just the job specification. The following demonstrates these

methods.

$ jobs

[1] Running ./long-running-proc &

[2] Running ./long-running-proc &

[3]- Running ./long-running-proc &

[4]+ Running ./long-running-proc &

$ %2

./long-running-proc

^Z

[2]+ Stopped ./long-running-proc

$ fg %3

./long-running-proc

^Z

[3]+ Stopped ./long-running-proc

$ jobs

[1] Running ./long-running-proc &

[2]- Stopped ./long-running-proc

[3]+ Stopped ./long-running-proc

[4] Running ./long-running-proc &

$ bg

[3]+ ./long-running-proc &

$ jobs

[1] Running ./long-running-proc &

[2]+ Stopped ./long-running-proc

[3] Running ./long-running-proc &

[4]- Running ./long-running-proc &

$

To kill a job that is running in the foreground, type Ctrl-c. To kill a job that has been

backgrounded, use the kill command. The kill command takes a job specification or a process

ID as an argument. To list the PIDs in addition to the job numbers, use the -l option of the jobs
command.

$ jobs

[1] Running ./long-running-proc &

[2] Running ./long-running-proc &

[3]- Running ./long-running-proc &

[4]+ Running ./long-running-proc &

$ fg %1

 83

./long-running-proc

^C$ jobs

[2] Running ./long-running-proc &

[3]- Running ./long-running-proc &

[4]+ Running ./long-running-proc &

$ kill %3

[3]- Terminated ./long-running-proc

$ jobs -l

[2]- 2914 Running ./long-running-proc &

[4]+ 2918 Running ./long-running-proc &

$ kill 2914

[2]- Terminated ./long-running-proc

$

The kill command simply sends a signal to a running process. The default signal, however, is

termination. The termination signal is referred to as SIGTERM or just TERM for short. To
display a list of signals and their corresponding numbers, use the kill -l command. To

specify a signal to send to a process, follow the kill command with a dash and the signal

name or number.

$ kill -l | grep SIGTERM

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

$ kill 123

$ kill -SIGTERM 234

$ kill -TERM 345

$ kill -15 456

If a process does not terminate after it has been sent the TERM signal, use the KILL signal. The
corresponding number for SIGKILL is 9.

$ ps | grep cannot-stop-me

2994 pts/1 00:00:00 cannot-stop-me

$ kill 2994

$ ps | grep cannot-stop-me

2994 pts/1 00:00:00 cannot-stop-me

$ kill -9 2994

$ ps | grep cannot-stop-me

$

84

Chapter 13 Switching Users

To switch users at the command line, use the su command. Without any arguments, su will

switch to the superuser account, also known as root. Alternatively, you can execute su root.

Switching users will not change your current working directory or environment variables, unless
you specify a hyphen following su. By specifying a hyphen, you simulate logging into the system

as that user, and thus are placed into that user's home directory with that user's environment.
For example, su - root.

su [username] Change to username or become the superuser.

Common su options:

su - A hyphen is used to provide an environment similar to what the user would expect had

the user logged in directly.

su -c command Specify a command to be executed. If the command is more than one word

in length, it needs to be quoted.

jason@linuxsvr:~$ export TEST=1

jason@linuxsvr:~$ su oracle

Password:

oracle@linuxsvr:/home/jason$ echo $TEST

1

oracle@linuxsvr:/home/jason$ pwd

/home/jason

oracle@linuxsvr:/home/jason$ exit

exit

jason@linuxsvr:~$ su - oracle

Password:

oracle@linuxsvr:~$ echo $TEST

oracle@linuxsvr:~$ pwd

/home/oracle

oracle@linuxsvr:~$ exit

jason@linuxsvr:~$ su -c 'echo $ORACLE_HOME' oracle

Password:

jason@linuxsvr:~$ su -c 'echo $ORACLE_HOME' - oracle

Password:

/u01/app/oracle/product/current

jason@linuxsvr:~$

 85

If you want to know what user you are working as, run the whoami command.

whoami Displays the effective username.

$ whoami

jason

$ su oracle

Password:

$ whoami

oracle

$

Sudo Super User Do

The sudo command allows you to run a command with the security privileges of another user.

sudo will run the command as the superuser if no username is specified, hence the name

"super user do." For example, sudo ls will run the ls command as the root user. sudo is

commonly used to install, start, and stop applications that require superuser privileges.

sudo Execute a command as another user, typically the superuser.

One advantage of using sudo over the su command is that you do not need to know the

password of the other user, usually the root user. This can eliminate issues that arise from using
shared passwords and generic accounts. When you execute the sudo command, you are

prompted for the current user's password. If the sudo configuration permits access, the

command is executed. The sudo configuration is typically controlled by the system administrator

and requires root access to change.

The su command is similar to sudo, but you should note these differences: su (switch user)

asks for the new user's password, whereas sudo asks for the current user's password, or

possibly no password at all. Su will change the current user of the shell, allowing multiple

separate commands to be issued, whereas sudo runs a single command and is finished. For

security reasons, sudo is generally preferable to su. The system administrator need not give the

user the root password, and has full control over what commands work with sudo.

Using Sudo

Here are the common ways to use the sudo command.

sudo -l List available commands that can be executed with sudo.

sudo command Run command as the superuser.

sudo -u root command Same as sudo command.

86

sudo -u user command Run command as user.

sudo su Switch to the superuser account.

sudo su - Switch to the superuser account with an environment you would expect to see had

you logged in as that user.

sudo su - username Switch to the username account with an environment you would expect

to see had you logged in as that username.

$ sudo -l

User jason may run the following commands on this host:

(root) NOPASSWD: /etc/init.d/apache2

(fred) NOPASSWD: /opt/fredsApp/bin/start

(fred) NOPASSWD: /opt/fredsApp/bin/stop

(root) /bin/su - oracle

$ sudo /etc/init.d/apache2 start

 * Starting web server apache2

$ sudo -u fred /opt/fredsApp/bin/start

Fred's app started as user fred.

$ sudo su - oracle

[sudo] password for jason:

oracle@linuxsvr:~$ whoami

oracle

oracle@linuxsvr:~$ exit

$ whoami

jason

$

The output of sudo -l displays what commands can be executed with sudo and under which

account. In the previous example, sudo will not prompt for a password for the commands

preceded with NOPASSWD. This type of configuration may be required to automate jobs via cron

that require escalated privileges.

 87

Chapter 14 Installing Software

The most common way to install software on a Linux system is through the use of packages. A
package not only contains the files that are installed on the system, but also additional
information called metadata. This metadata can include such information as the steps required
to complete the installation in the form of pre-installation and post-installation scripts, the
permission information for each of the files, the description of the package, the version, the
package maintainer, and any additional packages that are required for it to function properly.

To install, upgrade, or remove packages, use a package manager. When you tell the package
manager to install a given package, it not only installs that package, but also any other required
packages, also called dependencies, based on the package's metadata. The package manager
also maintains a database of package information. The package manager records what
packages are installed, what versions are installed, and what files belong to what packages.

RPM-Based Distributions

RPM is a recursive acronym that stands for RPM Package Manager; however, it started its life
as the RedHat Package Manager. RPM-based distributions include Red Hat Enterprise Linux
(RHEL), CentOS, Fedora, Oracle Linux, and Scientific Linux. You can manipulate RPM
packages directly with the rpm command or with another command line utility called yum.

yum search search-pattern Search for search-pattern.

yum install [-y] package Install package. Use the -y option to automatically answer yes

to yum's questions.

yum remove package Remove or uninstall package.

yum info [package] Display information about package.

To search for available software, use yum search search-pattern.

$ yum search web browser

Loaded plugins: refresh-packagekit, security

======================== N/S Matched: web, browser ========================

icedtea-web.i686 : Additional Java components for OpenJDK - Java browser

 : plug-in and Web Start implementation

elinks.i686 : A text-mode Web browser

firefox.i686 : Mozilla Firefox Web browser

lynx.i686 : A text-based Web browser

 Full name and summary matches only, use "search all" for everything.

88

$ yum search firefox

Loaded plugins: refresh-packagekit, security

=========================== N/S Matched: firefox ==========================

firefox.i686 : Mozilla Firefox Web browser

 Name and summary matches only, use "search all" for everything.

$

To install software, use the command yum install package. Installing software requires

superuser privileges. Use sudo or switch to the root account with the su command before

installing or removing software.

$ sudo yum install firefox

Loaded plugins: refresh-packagekit, security

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package firefox.i686 0:24.5.0-1.el6.centos will be installed

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package Arch Version Repository Size

===

Installing:

 firefox i686 24.5.0-1.el6.centos updates 47 M

Transaction Summary

===

Install 1 Package(s)

Total download size: 47 M

Installed size: 80 M

Is this ok [y/N]: y

Downloading Packages:

firefox-24.5.0-1.el6.centos.i686.rpm | 47 MB 00:14

Running rpm_check_debug

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing : firefox-24.5.0-1.el6.centos.i686 1/1

 89

 Verifying : firefox-24.5.0-1.el6.centos.i686 1/1

Installed:

 firefox.i686 0:24.5.0-1.el6.centos

Complete!

$

To uninstall a package, use the command yum remove package. Like installing software,

removing software requires superuser privileges.

$ sudo yum remove firefox

Loaded plugins: refresh-packagekit, security

Setting up Remove Process

Resolving Dependencies

--> Running transaction check

---> Package firefox.i686 0:24.5.0-1.el6.centos will be erased

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package Arch Version Repository Size

===

Removing:

 firefox i686 24.5.0-1.el6.centos @updates 80 M

Transaction Summary

===

Remove 1 Package(s)

Installed size: 80 M

Is this ok [y/N]: y

Downloading Packages:

Running rpm_check_debug

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Erasing : firefox-24.5.0-1.el6.centos.i686 1/1

 Verifying : firefox-24.5.0-1.el6.centos.i686 1/1

Removed:

90

 firefox.i686 0:24.5.0-1.el6.centos

Complete!

$

Using the rpm Command

You can also interact with the RPM package manager directly by using the rpm command.

rpm -qa List all the installed packages.

rpm -qf /path/to/file List the package that contains file.

rpm -ivh package.rpm Install a package from the file named package.rpm.

rpm -ql package List all files that belong to package.

$ rpm -qa | sort | head

acl-2.2.49-6.el6.i686

acpid-1.0.10-2.1.el6.i686

aic94xx-firmware-30-2.el6.noarch

alsa-lib-1.0.22-3.el6.i686

alsa-plugins-pulseaudio-1.0.21-3.el6.i686

alsa-utils-1.0.22-5.el6.i686

anaconda-13.21.215-1.el6.centos.i686

anaconda-yum-plugins-1.0-5.1.el6.noarch

apache-tomcat-apis-0.1-1.el6.noarch

apr-1.3.9-5.el6_2.i686

$ rpm -qf /usr/bin/sudo

sudo-1.8.6p3-12.el6.i686

$ sudo rpm -ivh SpiderOak-5.1.3-1.i386.rpm

Preparing... ####################### [100%]

 1:SpiderOak ####################### [100%]

$ rpm -ql sudo | head

/etc/pam.d/sudo

/etc/pam.d/sudo-i

/etc/sudo-ldap.conf

/etc/sudo.conf

/etc/sudoers

/etc/sudoers.d

/usr/bin/sudo

/usr/bin/sudoedit

 91

/usr/bin/sudoreplay

/usr/libexec/sesh

$

DEB-Based Distributions

Linux distributions that are based on Debian use the DEB package format. Some of the more
popular Debian-based distributions include Debian, Elementary OS, Linux Mint, and Ubuntu.
The package manager for Debian-based distributions is called APT, the advanced packaging
tool. APT is broken up into a few small commands. The two most commonly used APT
commands are apt-cache and apt-get.

apt-cache search search-pattern Search for search-pattern.

apt-get install [-y] package Install package. Use the -y option to automatically answer

yes to apt-get's questions.

apt-get remove package Remove or uninstall package, leaving behind configuration files.

apt-get purge package Remove or uninstall package, deleting configuration files.

apt-cache show package Display information about package.

To search for software, use the command apt-cache search search-pattern.

$ apt-cache search web browser | head

abrowser - Safe and easy web browser from Mozilla - transitional package

abrowser-branding - Safe and easy web browser from Mozilla - transitional

package

akregator - RSS/Atom feed aggregator

firefox - Safe and easy web browser from Mozilla

firefox-branding - Safe and easy web browser from Mozilla - transitional

package

firefox-dbg - Safe and easy web browser from Mozilla - debug symbols

firefox-dev - Safe and easy web browser from Mozilla - development files

firefox-gnome-support - Safe and easy web browser from Mozilla - GNOME

support

firefox-gnome-support-dbg - Safe and easy web browser from Mozilla -

transitional package

gimp-help-de - Documentation for the GIMP (German)

$

92

To install software, use the command apt-get install package. Installing software requires

superuser privileges. Use sudo or switch to the root account with the su command before

installing or removing software.

$ sudo apt-get install firefox

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

 libdbusmenu-gtk4 xul-ext-ubufox

Suggested packages:

 ttf-lyx

The following NEW packages will be installed:

 firefox libdbusmenu-gtk4 xul-ext-ubufox

0 upgraded, 3 newly installed, 0 to remove and 193 not upgraded.

Need to get 36.1 MB of archives.

After this operation, 82.4 MB of additional disk space will be used.

Do you want to continue [Y/n]? y

Get:1 http://archive.ubuntu.com/ubuntu/ precise-updates/main libdbusmenu-

gtk4 amd64 0.6.2-0ubuntu0.2 [31.2 kB]

Get:2 http://archive.ubuntu.com/ubuntu/ precise-updates/main firefox amd64

29.0+build1-0ubuntu0.12.04.2 [36.0 MB]

Get:3 http://archive.ubuntu.com/ubuntu/ precise-updates/main xul-ext-ubufox

all 2.7-0ubuntu0.12.04.1 [56.8 kB]

Fetched 36.1 MB in 23s (1,535 kB/s)

Selecting previously unselected package libdbusmenu-gtk4.

(Reading database ... 102882 files and directories currently installed.)

Unpacking libdbusmenu-gtk4 (from .../libdbusmenu-gtk4_0.6.2-

0ubuntu0.2_amd64.deb) ...

Selecting previously unselected package firefox.

Unpacking firefox (from .../firefox_29.0+build1-0ubuntu0.12.04.2_amd64.deb)

...

Selecting previously unselected package xul-ext-ubufox.

Unpacking xul-ext-ubufox (from .../xul-ext-ubufox_2.7-

0ubuntu0.12.04.1_all.deb) ...

Processing triggers for desktop-file-utils ...

Processing triggers for bamfdaemon ...

Rebuilding /usr/share/applications/bamf.index...

Processing triggers for gnome-menus ...

Processing triggers for man-db ...

Setting up libdbusmenu-gtk4 (0.6.2-0ubuntu0.2) ...

Setting up firefox (29.0+build1-0ubuntu0.12.04.2) ...

 93

update-alternatives: using /usr/bin/firefox to provide /usr/bin/gnome-www-

browser (gnome-www-browser) in auto mode.

update-alternatives: using /usr/bin/firefox to provide /usr/bin/x-www-

browser (x-www-browser) in auto mode.

Please restart all running instances of firefox, or you will experience

problems.

Setting up xul-ext-ubufox (2.7-0ubuntu0.12.04.1) ...

Processing triggers for libc-bin ...

ldconfig deferred processing now taking place

$

To uninstall a package, use the command apt-get remove package. Like installing software,

removing software requires superuser privileges.

$ sudo apt-get remove firefox

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages will be REMOVED:

 firefox

0 upgraded, 0 newly installed, 1 to remove and 193 not upgraded.

After this operation, 81.8 MB disk space will be freed.

Do you want to continue [Y/n]? y

(Reading database ... 103024 files and directories currently installed.)

Removing firefox ...

Processing triggers for man-db ...

Processing triggers for desktop-file-utils ...

Processing triggers for bamfdaemon ...

Rebuilding /usr/share/applications/bamf.index...

Processing triggers for gnome-menus ...

$

Using the dpkg Command

In addition to using the APT utilities, you can also interact directly with the package manager by
using the dpkg command.

dgpk -l List all the installed packages.

dpkg –S /path/to/file List the package that contains file.

dpkg -i package.deb Install a package from the file named package.deb.

dpkg -L package List all files that belong to package.

94

$ dpkg -l | head

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-

pend

|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)

||/ Name Version Description

+++-===================-=======================-

============================

ii accountsservice 0.6.15-2ubuntu9.6 query and manipulate user

account information

ii acpid 1:2.0.10-1ubuntu3 Advanced Configuration and

Power Interface event daemon

ii adduser 3.113ubuntu2 add and remove users and

groups

ii adium-theme-ubuntu 0.3.2-0ubuntu1 Adium message style for

Ubuntu

ii alsa-base 1.0.25+dfsg-0ubuntu1.1 ALSA driver configuration

files

$ dpkg -S /usr/bin/sudo

sudo: /usr/bin/sudo

$ sudo dpkg -i spideroak_5.1.3_i386.deb

Selecting previously unselected package spideroak.

(Reading database ... 153942 files and directories currently installed.)

Unpacking spideroak (from spideroak_5.1.3_i386.deb) ...

Setting up spideroak (1:5.1.3) ...

Processing triggers for man-db ...

Processing triggers for desktop-file-utils ...

Processing triggers for bamfdaemon ...

Rebuilding /usr/share/applications/bamf.index...

Processing triggers for gnome-menus ...

$ dpkg -L sudo | head

/.

/etc

/etc/sudoers.d

/etc/sudoers.d/README

/etc/pam.d

/etc/pam.d/sudo

/etc/sudoers

/etc/init.d

/etc/init.d/sudo

/usr

$

	The Story behind the Succinctly Series of Books
	About the Author
	Chapter 1 Introduction
	What is Linux?
	Linux Distributions

	Chapter 2 Linux Directory Structure
	Common Top-Level Directories
	/ The Root Directory
	/bin Binaries
	/etc System Configuration Files
	/home Home Directories
	/opt Optional or Third-Party Software
	/tmp Temporary Space
	/usr User-Related Data, Read-Only
	/var Variable Data

	Comprehensive Listing of Top-Level Directories
	Application Directory Structures
	Organizational Directory Structures

	Chapter 3 Command Line Interface
	Basic Commands
	Command Line Help

	Chapter 4 Directories
	Creating and Removing Directories

	Chapter 5 Viewing File and Directory Details
	Escaping Spaces and Special Characters

	Chapter 6 Permissions
	Decoding Permissions
	Changing Permissions
	Numeric Based Permissions
	Commonly Used Permissions
	Working with Groups
	Directory Permissions
	Default Permissions and the File Creation Mask
	Special Modes
	umask Examples

	Chapter 7 Viewing and Editing Files
	Editing Files
	The Vim Editor
	Command Mode
	Insert Mode
	Line Mode
	Repeating Commands
	Additional Commands

	Emacs
	Graphical Editors

	Chapter 8 Deleting, Moving, and Renaming Files and Directories
	Chapter 9 Finding, Sorting, and Comparing Files and Directories
	Sorting
	Comparing

	Chapter 10 I/O Redirection
	Chapter 11 Additional Command Line Concepts
	Aliases
	Personal Initialization Files
	Shell History
	Tab Completion
	Line Continuation

	Chapter 12 Processes and Jobs
	Jobs

	Chapter 13 Switching Users
	Sudo Super User Do
	Using Sudo

	Chapter 14 Installing Software
	RPM-Based Distributions
	Using the rpm Command
	DEB-Based Distributions
	Using the dpkg Command

